Publications by authors named "Halfter W"

Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes.

View Article and Find Full Text PDF

The Descemet's membrane (DM) and the lens capsule (LC) are two ocular basement membranes (BMs) that are essential in maintaining stability and structure of the cornea and lens. In this study, we investigated the proteomes and biomechanical properties of these two materials to uncover common and unique properties. We also screened for possible protein changes during diabetes.

View Article and Find Full Text PDF

Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which is an important physiological regulator of stem cell function and fate.

View Article and Find Full Text PDF

Basement membranes (BMs) are specialized sheets of extracellular matrix that outline epithelial cell layers, muscle fibers, blood vessels, and peripheral nerves. A well-documented histological hallmark of progressing diabetes is a major increase in vascular BM thickness. In order to investigate whether this structural change is accompanied by a change in the protein composition, we compared the proteomes of retinal vascular BMs from diabetic and non-diabetic donors by using LC-MS/MS.

View Article and Find Full Text PDF

Tenascin-C (TN-C) is an extracellular matrix glycoprotein linked to inflammatory processes in pathological conditions including Alzheimer disease (AD). We examined the distribution of TN-C immunoreactivity (ir) in relation to amyloid-β (Aβ) plaques and vascular Aβ deposits in autopsy brain tissues from 14 patients with clinical and neuropathological AD and 10 aged-matched controls with no cognitive impairment; 5 of the controls had Aβ plaques and 5 did not. TN-C ir was abundant in cortical white matter and subpial cerebral gray matter in all cases, whereas TN-C ir was weak in blood vessels.

View Article and Find Full Text PDF

Purpose: Cataract surgery requires the removal of a circular segment of the anterior lens capsule (LC) by manual or femtosecond laser (FL) capsulotomy. Tears in the remaining anterior LC may compromise surgical outcome. We investigated whether biophysical differences in the rim properties of the LC remaining in the patient after manual or FL capsulotomy (FLC) lead to different risks with regard to anterior tear formation.

View Article and Find Full Text PDF

Basement membranes (BMs) are thin sheets of extracellular matrix that outline epithelia, muscle fibers, blood vessels and peripheral nerves. The current view of BM structure and functions is based mainly on transmission electron microscopy imaging, in vitro protein binding assays, and phenotype analysis of human patients, mutant mice and invertebrata. Recently, MS-based protein analysis, biomechanical testing and cell adhesion assays with in vivo derived BMs have led to new and unexpected insights.

View Article and Find Full Text PDF

The basement membranes (BMs) of the nervous system include (a) the pial BM that surrounds the entire CNS, (b) the BMs that outline the vascular system of the CNS and PNS and (c) the BMs that are associated with Schwann cells. We previously found that isolated BMs are bi-functionally organized, whereby the two surfaces have different compositional, biomechanical and cell adhesion properties. To find out whether the bi-functional nature of BMs has an instructive function in organizing the tissue architecture of the developing nervous system, segments of human BMs were inserted into (a) the parasomitic mesoderm of chick embryos, intersecting with the pathways of axons and neural crest cells, or (b) into the midline of the embryonic chick spinal cord.

View Article and Find Full Text PDF

Basement membranes (BMs) are extracellular matrix sheets comprising the laminins, type-IV collagens, nidogens, and the heparan sulfate proteoglycans, perlecan, collagen XVIII, and agrin. In intact BMs, BM proteins are physiologically insoluble and partially resistant to proteolytic digestion, making BMs a challenge to study. Here three types of BMs from adult human eyes, the inner limiting membrane (ILM), the retinal vascular BMs, and the lens capsule, were isolated for analysis by 1D-SDS-PAGE and LC-MS/MS.

View Article and Find Full Text PDF

Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease.

View Article and Find Full Text PDF
Article Synopsis
  • A study looked at changes in special thin layers called basement membranes in the eyes of people with diabetes.
  • The researchers found these layers got thicker and stiffer in diabetic eyes compared to those without diabetes.
  • There were also more specific proteins in the diabetic eyes that usually aren't found in healthy eyes, showing that diabetes affects the eyes in special ways.
View Article and Find Full Text PDF

The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated.

View Article and Find Full Text PDF

Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development.

View Article and Find Full Text PDF

Mutations in glycosyltransferases, such as protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1), causes disruptions of basement membranes (BMs) that results in neuronal ectopias and muscular dystrophy. While the mutations diminish dystroglycan-mediated cell-ECM interactions, the cause and mechanism of BM disruptions remain unclear. In this study, we established an in vitro model to measure BM assembly on the surface of neural stem cells.

View Article and Find Full Text PDF

Basement membranes (BMs) evolved together with the first metazoan species approximately 500 million years ago. Main functions of BMs are stabilizing epithelial cell layers and connecting different types of tissues to functional, multicellular organisms. Mutations of BM proteins from worms to humans are either embryonic lethal or result in severe diseases, including muscular dystrophy, blindness, deafness, kidney defects, cardio-vascular abnormalities or retinal and cortical malformations.

View Article and Find Full Text PDF

Kidney function requires the appropriate distribution of membrane proteins between the apical and basolateral surfaces along the kidney tubule. Further, the absolute amount of a protein at the cell surface versus intracellular compartments must be attuned to specific physiological needs. Endolyn (CD164) is a transmembrane protein that is expressed at the brush border and in apical endosomes of the proximal convoluted tubule and in lysosomes of more distal segments of the kidney.

View Article and Find Full Text PDF

Purpose: The purpose of this article was to create a nanometer scale topographic and biomechanical profile of the human internal limiting membrane (ILM) under native conditions.

Methods: ILMs from the posterior pole of postmortem human eyes were prepared as flat mounts and investigated by atomic force microscopy (AFM) under physiological conditions. Structural analysis was complemented by transmission electron microscopy.

View Article and Find Full Text PDF

Purpose: Some forms of congenital muscular dystrophy are associated with cortical and retinal dysplasias. Protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice, one of the mouse models of muscular dystrophy, exhibit a thinner retina with reduced density of retinal ganglion cells. This study is aimed to further characterize the knockout retina, with special emphasis on the inner limiting membrane, the basement membrane of the retina.

View Article and Find Full Text PDF

Basement membranes (BMs) are physiologically insoluble extracellular matrix sheets present in all multicellular organisms. They play an important role in providing mechanical strength to tissues and regulating cell behavior. Proteomic analysis of BM proteins is challenged by their high molecular weights and extensive post-translational modifications.

View Article and Find Full Text PDF

Basement membranes (BMs) are considered to be uniform, approximately 100 nm-thin extracellular matrix sheets that serve as a substrate for epithelial cells, endothelial cells and myotubes. To find out whether BMs maintain their ultrastructure, protein composition and biophysical properties throughout life the natural aging history of the human inner limiting membranes (ILM) was investigated. The ILM is a BM at the vitreal surface of the retina that connects the retina with the vitreous.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a powerful tool for generating 3-dimensional structural and functional image data. MRI has already proven valuable in creating atlases of mouse and quail development. Here, we have exploited high resolution MRI to determine the parameters necessary to acquire images of the chick embryo eye.

View Article and Find Full Text PDF

Purpose: The vitreous body (VB) is a transparent, extracellular matrix structure that fills the vitreous cavity of the eye. Major constituents of the VB are hyaluronic acid (HA) and glycosaminoglycans (GAGs), both of which are highly charged, linear carbohydrate polymers. The present experiments investigate a possible role of HA and GAGs in regulating eye size during development and investigate whether changes in eye size are synchronized with cell proliferation in the retina.

View Article and Find Full Text PDF

The inner limiting membrane (ILM) and the vitreous body (VB) are two major extracellular matrix (ECM) structures that are essential for early eye development. The ILM is considered to be the basement membrane of the retinal neuroepithelium, yet in situ hybridization and chick/quail transplant experiments in organ-cultured eyes showed that all components critical for ILM assembly, such as laminin or collagen IV, are not synthesized by the retina. Rather, ILM proteins, with the exception of agrin, originate from the lens or (and) ciliary body and are shed into the vitreous.

View Article and Find Full Text PDF

Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy.

View Article and Find Full Text PDF