Publications by authors named "Halfter H"

The vast majority of living organisms have evolved a circadian rhythm of roughly 24 h in adaptation to ever-changing environmental conditions, such as the cycle of light and darkness. In some sleep disorders like idiopathic hypersomnia (IH) this adaptation is defective. As the etiology of this disease is largely unknown, we examined the circadian period length of patients suffering from IH.

View Article and Find Full Text PDF

Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro.

View Article and Find Full Text PDF

Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. In this study, we analyzed the expression and function of desmoplakin in peripheral nerve regeneration.

View Article and Find Full Text PDF

Objectives: To determine the nature and frequency of HSJ1 mutations in patients with hereditary motor and hereditary motor and sensory neuropathies.

Methods: Patients were screened for mutations by genome-wide or targeted linkage and homozygosity studies, whole-exome sequencing, and Sanger sequencing. RNA and protein studies of skin fibroblasts were used for functional characterization.

View Article and Find Full Text PDF

The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype.

View Article and Find Full Text PDF

From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC).

View Article and Find Full Text PDF

Ascorbic acid (vitamin C) is necessary for myelination of Schwann cell/neuron cocultures and has shown beneficial effects in the treatment of a Charcot-Marie-Tooth neuropathy 1A (CMT1A) mouse model. Although clinical studies revealed that ascorbic acid treatment had no impact on CMT1A, it is assumed to have an important function in peripheral nerve myelination and possibly in remyelination. However, the transport pathway of ascorbic acid into peripheral nerves and the mechanism of ascorbic acid function in peripheral nerves in vivo remained unclear.

View Article and Find Full Text PDF

Successful axonal regeneration is a complex process determined by both axonal environment and endogenous neural capability of the regenerating axons in the central and the peripheral nervous systems. Numerous external inhibitory factors inhibit axonal regeneration after injury. In response, neurons express various regeneration-associated genes to overcome this inhibition and increase the intrinsic growth capacity.

View Article and Find Full Text PDF

Autosomal-dominant striatal degeneration (ADSD) is an autosomal-dominant movement disorder affecting the striatal part of the basal ganglia. ADSD is characterized by bradykinesia, dysarthria, and muscle rigidity. These symptoms resemble idiopathic Parkinson disease, but tremor is not present.

View Article and Find Full Text PDF

Ascorbic acid has been shown to be an essential component for in vitro myelination and to improve the clinical and pathological phenotype of a mouse model of Charcot-Marie-tooth disease 1A. The mechanism of ascorbic acid uptake into peripheral nerves, however, has not been addressed so far. Hence, we studied the expression and activity of sodium-dependent vitamin C transporters 1 and 2 (SVCT1 and 2) in the peripheral nervous system.

View Article and Find Full Text PDF

Alteration in the expression level of peripheral myelin protein 22 (PMP22) is the most frequent cause for demyelinating neuropathies of Charcot-Marie-Tooth type. Here, we demonstrate a loss of motoneurons (MNs) in the spinal cords from transgenic mice over-expressing Pmp22 (Pmp22(tg)) while mice lacking Pmp22 [Pmp22(ko); knockout (ko)] exhibited normal MN numbers at the symptomatic age of 60 days. In order to describe the molecular changes in affected MNs, these cells were isolated from lumbar spinal cords by laser-capture microdissection.

View Article and Find Full Text PDF

N-cadherin and beta-catenin are involved in cell adhesion and cell cycle in tumor cells and neural crest. Both are expressed at key stages of Schwann cell (SC) development, but little is known about their function in the SC lineage. We studied the role of these molecules in adult rat derived SC-embryonic dorsal root ganglion cocultures by using low-Ca(2+) conditions and specific blocking antibodies to interfere with N-cadherin function and by using small interfering RNA (siRNA) to decrease beta-catenin expression in both SC-neuron cocultures and adult rat-derived SC monocultures.

View Article and Find Full Text PDF

Oncostatin M has been characterized as a potent growth inhibitor for various tumor cells. Oncostatin M-treated glioblastoma cells cease proliferation and instigate astrocytal differentiation. The oncostatin M-induced cell cycle arrest in G(1) phase is characterized by increased level of the cyclin-dependent kinase (CDK) inhibitory proteins p21(Cip1/Waf1/Sdi1) and p27(Kip1).

View Article and Find Full Text PDF

Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant recurrent neuropathy affecting the brachial plexus. HNA is triggered by environmental factors such as infection or parturition. We report three mutations in the gene septin 9 (SEPT9) in six families with HNA linked to chromosome 17q25.

View Article and Find Full Text PDF

Two major transcripts of lymphoid enhancer factor-1 (LEF-1) have been described. The long isoform with b-catenin binding domain functions as a transcriptional enhancer factor. The short isoform derives from an intronic promoter and exhibits dominant negative activity.

View Article and Find Full Text PDF

Novel high-throughput analyses in molecular biology allow sensitive and rapid identification of disease-related genes and drug targets. We have used quantitative real-time reverse transcription-PCR reactions (n = 23000) to analyze expression of all human receptor tyrosine kinases (n = 56) in malignant tumors (n = 313) of different origins and normal control samples (n = 58). The different tumor types expressed very different numbers of receptor tyrosine kinases: whereas brain tumors and testicular cancer expressed 50 receptor tyrosine kinases, acute myeloid leukemia (AML) samples expressed only 20 different ones.

View Article and Find Full Text PDF

E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation.

View Article and Find Full Text PDF

A number of studies have demonstrated that the STAT pathway is an important signaling cascade utilized by the IL-6 cytokine family to regulate a variety of cell functions. However, the downstream target genes of STAT activation that mediate the cytokine-induced cellular responses are largely uncharacterized. The aims of the current study are to determine whether the STAT signaling pathway is critically involved in the oncostatin M (OM)-induced growth inhibition and morphological changes of MCF-7 cells and to identify STAT3-target genes that are utilized by OM to regulate cell growth and morphology.

View Article and Find Full Text PDF

Gangliosides have been described as modulators of growth factor receptor activity and subsequent cellular function. Due to the lower-pH environment found in tumor cells, ganglosides are thought to be formed (at least to some extent) into their lactone forms. The aim of the study was to analyze the mode of action of the lactone of the ganglioside GM3 on epidermal growth factor (EGF) signaling in human ovarial epidermoid carcinoma A431 cells and cell growth in human oral epidermoid carcinoma KB cells by applying the GM3 lactone analog HK1-ceramide 2, which is stable under hydrolytic conditions.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease type 1 (CMT1) is a demyelinating peripheral neuropathy most commonly caused by a DNA duplication on chromosome 17p11.2 including the peripheral myelin protein 22 (PMP22). Point mutations in the myelin protein zero gene (MPZ) and gap junction protein, beta-1 gene (GJB1) are also found in association with CMT1 or the subclass of CMT type X (CMTX), respectively.

View Article and Find Full Text PDF

The radiolabelled amino acid 3-[(123)I]iodo-L-alpha-methyl tyrosine ([(123)I]IMT) is a promising tool for the diagnosis and monitoring of brain tumors using single-photon emission tomography (SPECT). However, little is known about the precise kinetics of [(123)I]IMT uptake in human glioma cells. The kinetic analysis of [(123)I]IMT transport in human GOS3 glioma cells yielded a high-affinity apparent Michaelis constant (K(m) = 20.

View Article and Find Full Text PDF

We describe here the oncostatin M (OSM)-dependent inhibition of in vivo tumour formation after intracerebral inoculation of glioblastoma cells in mice. We generated human glioblastoma cells transfected with the OSM gene under the control of a tetracycline-response promoter. Upon removal of tetracycline from the medium, cells exhibited a differentiated cell morphology, while proliferation was significantly inhibited.

View Article and Find Full Text PDF

3-[(123)I]Iodo-L-alpha-methyl tyrosine ((123)I-IMT) is used for diagnosis and monitoring of brain tumours by means of single-photon emission tomography. As recently shown, (123)I-IMT is predominantly mediated into rat C6 glioma cells by sodium-independent system L for large neutral amino acids. Until now, (123)I-IMT transport in non-neoplastic glial cells has not been examined.

View Article and Find Full Text PDF

Somatic mutations of the receptor tyrosine kinase Flt3 consisting of internal tandem duplications (ITD) occur in 20% of patients with acute myeloid leukemia. They are associated with a poor prognosis of the disease. In this study, we characterized the oncogenic potential and signaling properties of Flt3 mutations.

View Article and Find Full Text PDF