Pyrimidines are important nucleic acid precursors which are constantly synthesized, degraded, and rebuilt in the cell. Four degradation pathways, two of which are found in eukaryotes, have been described. One of them, the URC pathway, has been initially discovered in our laboratory in the yeast Lachancea kluyveri.
View Article and Find Full Text PDFNat Struct Mol Biol
August 2012
Lens epithelium-derived growth factor p75 splice variant (LEDGF) is a chromatin-binding protein known for its antiapoptotic activity and ability to direct human immunodeficiency virus into active transcription units. Here we show that LEDGF promotes the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. Depletion of LEDGF impairs the recruitment of C-terminal binding protein interacting protein (CtIP) to DNA DSBs and the subsequent CtIP-dependent DNA-end resection.
View Article and Find Full Text PDFMaintenance of genome integrity is of critical importance to cells. To identify key regulators of genomic integrity, we screened a human cell line with a kinome small interfering RNA library. WEE1, a major regulator of mitotic entry, and CHK1 were among the genes identified.
View Article and Find Full Text PDFFEMS Yeast Res
December 2008
The yeast Saccharomyces kluyveri (Lachancea kluyveri), a far relative of Saccharomyces cerevisiae, is not a widely studied organism in the laboratory. However, significant contributions to the understanding of nucleic acid precursors degradation in eukaryotes have been made using this model organism. Here we review eukaryotic pyrimidine degradation with emphasis on the contributions made with S.
View Article and Find Full Text PDF