The next NASA-led Mars mission (Mars 2020) will carry a suite of instrumentation dedicated to investigating Martian history and the detection of potential biosignatures. SHERLOC, a deep UV Raman/Fluorescence spectrometer has the ability to detect and map the distribution of many organic compounds, including the aromatic molecules that are fundamental building blocks of life on Earth, at concentrations down to 1 ppm. The mere presence of organic compounds is not a biosignature: there is widespread distribution of reduced organic molecules in the Solar System.
View Article and Find Full Text PDFThe microbial ecology and activity of serpentine deposits and associated hydrated minerals are largely unknown. Previous research has largely focused on microbial communities in active serpentinizing systems, whereas relatively little research has demonstrated the ability of serpentine deposits to host microbial communities after the cessation of serpentinization. Given the potential role of serpentinization reactions fueling primitive microbial metabolisms on early Earth and the identification of serpentine deposits on Mars, knowledge of these geobiological relationships and potential for serpentine to host extant microbial communities and preserve biosignatures is increasingly important for planetary exploration seeking signs of life.
View Article and Find Full Text PDFWhile many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island.
View Article and Find Full Text PDF