Publications by authors named "Haley M Sapers"

Article Synopsis
  • * An interdisciplinary group of experts developed a strategic framework for exploring these planetary caves, focusing on areas like astrobiology, geology, and robotics, aiming to guide research for the next decade.
  • * They identified 53 priority research questions from an initial list of 198, emphasizing that with sufficient funding and support, advancements in technology could lead to robotic missions investigating lunar and Martian caves for evidence of extraterrestrial life and future human habitation.
View Article and Find Full Text PDF

The next NASA-led Mars mission (Mars 2020) will carry a suite of instrumentation dedicated to investigating Martian history and the detection of potential biosignatures. SHERLOC, a deep UV Raman/Fluorescence spectrometer has the ability to detect and map the distribution of many organic compounds, including the aromatic molecules that are fundamental building blocks of life on Earth, at concentrations down to 1 ppm. The mere presence of organic compounds is not a biosignature: there is widespread distribution of reduced organic molecules in the Solar System.

View Article and Find Full Text PDF

The microbial ecology and activity of serpentine deposits and associated hydrated minerals are largely unknown. Previous research has largely focused on microbial communities in active serpentinizing systems, whereas relatively little research has demonstrated the ability of serpentine deposits to host microbial communities after the cessation of serpentinization. Given the potential role of serpentinization reactions fueling primitive microbial metabolisms on early Earth and the identification of serpentine deposits on Mars, knowledge of these geobiological relationships and potential for serpentine to host extant microbial communities and preserve biosignatures is increasingly important for planetary exploration seeking signs of life.

View Article and Find Full Text PDF

While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island.

View Article and Find Full Text PDF