Publications by authors named "Haley Lindberg"

The deprotonation of propargylic C-H bonds for subsequent functionalization typically requires stoichiometric metal alkyl or amide reagents. In addition to the undesirable generation of stoichiometric metallic waste, these conditions limit the functional group compatibility and versatility of this functionalization strategy and often result in regioisomeric mixtures. In this article, we report the use of dicarbonyl cyclopentadienyliron(ii) complexes for the generation of propargylic anion equivalents toward the direct electrophilic functionalization of propargylic C-H bonds under mild, catalytic conditions.

View Article and Find Full Text PDF

Systemic inflammation ensues following traumatic injury, driving immune dysregulation and multiple organ dysfunction (MOD). While a balanced immune/inflammatory response is ideal for promoting tissue regeneration, most trauma patients exhibit variable and either overly exuberant or overly damped responses that likely drive adverse clinical outcomes. We hypothesized that these inflammatory phenotypes occur in the context of severe injury, and therefore sought to define clinically distinct endotypes of trauma patients based on their systemic inflammatory responses.

View Article and Find Full Text PDF

The discovery of catalytic systems based on earth-abundant transition metals for the functionalization of C-H bonds enables streamlined and sustainable solutions to problems in synthetic organic chemistry. In this Communication, we disclose an iron-based catalytic system for the functionalization of propargylic and allylic C-H bonds. Inexpensive and readily available cyclopentadienyliron(II) dicarbonyl complexes were employed as catalysts for a novel deprotonative activation mode for C-H functionalization, an approach that allows for the direct union of unsaturated building blocks with aryl aldehydes and other carbonyl electrophiles to deliver a range of unsaturated alcohol coupling products under operationally simple and functional group tolerant reaction conditions.

View Article and Find Full Text PDF

Trauma is the leading cause of death worldwide for individuals under the age of 55. Interpatient genomic differences, in the form of candidate single-nucleotide polymorphisms (SNPs), have been associated previously with adverse outcomes after trauma. However, the utility of these SNPs to predict outcomes based on a meaningful endpoint such as survival is as yet undefined.

View Article and Find Full Text PDF