Publications by authors named "Haley L Moyer"

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CL) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems.

View Article and Find Full Text PDF

models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiological and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs).

View Article and Find Full Text PDF

Microphysiological systems are an emerging area of in vitro drug development, and their independent evaluation is important for wide adoption and use. The primary goal of this study was to test reproducibility and robustness of a renal proximal tubule microphysiological system, OrganoPlate 3-lane 40, as an in vitro model for drug transport and toxicity studies. This microfluidic model was compared with static multiwell cultures and tested using several human renal proximal tubule epithelial cell (RPTEC) types.

View Article and Find Full Text PDF

Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility.

View Article and Find Full Text PDF