Publications by authors named "Haley A Klitzing"

The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains.

View Article and Find Full Text PDF

This review discusses the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and magnetic sector SIMS with high lateral resolution performed on a Cameca NanoSIMS 50(L) to imaging lipids. The similarities between the two SIMS approaches and the differences that impart them with complementary strengths are described, and various strategies for sample preparation and to optimize the quality of the SIMS data are presented. Recent reports that demonstrate the new insight into lipid biochemistry that can be acquired with SIMS are also highlighted.

View Article and Find Full Text PDF

The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains.

View Article and Find Full Text PDF

Sphingolipids play important roles in plasma membrane structure and cell signaling. However, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of (15)N-enriched ions from metabolically labeled (15)N-sphingolipids in the plasma membrane, using high-resolution imaging mass spectrometry.

View Article and Find Full Text PDF

Characterization of the distributions of specific proteins and lipids within cellular membranes is currently a major challenge. Advances in secondary ion mass spectrometry (SIMS) now enable the distributions of isotopically labeled lipids within cellular or model membranes to be imaged with chemical specificity and high (≥50 nm) lateral resolution. Here, methods to image the distributions of sphingolipids within the membranes of intact cells with a Cameca NanoSIMS are described.

View Article and Find Full Text PDF