Publications by authors named "Hale Berber"

In this study, the performance of chitosan based semi-IPN nanocomposite hydrogels for the adsorptive removal of basic violet 14 (BV14) from aqueous solution has been explored. Batch adsorption studies were conducted to determine the effect of various parameters on BV14 adsorption, and optimum values were reported as pH of 8, the adsorbent dosage of 0.025 g, initial BV14 concentration of 5 mg L and contact time of 90 min at a temperature of 25 °C.

View Article and Find Full Text PDF

Wound healing is a process getting affected by internal and external factors and might be interrupted by infections. To overcome infections during wound healing, novel antibacterial agents such as antimicrobial peptides have gained popularity because of the rising antibiotic resistance. Therefore, in this study, a three-dimensional polymeric scaffold was designed for the controlled release of HF-18 peptide, with the contribution of hyaluronic acid, chondroitin sulfate, and chitosan polymers with the crosslinker genipin.

View Article and Find Full Text PDF

In recent years, polymeric bio-adsorbents offers high removal efficiency, superior adsorption capacity and selectivity against various pollutants in aqueous medium. While designing these adsorbents, their environmental friendliness, sustainability, renewability, easy accessibility, and cost-effectiveness should be considered. In this study, GO incorporated semi-interpenetrating network (semi-IPN) nanocomposite hydrogels (CS/AAm/IA/GO) were obtained by free radical copolymerization of acrylamide (AAm) and itaconic acid (IA) in the presence of chitosan (CS) as an environmentally friendly bio-adsorbent.

View Article and Find Full Text PDF

In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.

View Article and Find Full Text PDF