Publications by authors named "Haldar J"

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Purpose: BUDA-cEPI has been shown to achieve high-quality, high-resolution diffusion magnetic resonance imaging (dMRI) with fast acquisition time, particularly when used in conjunction with S-LORAKS reconstruction. However, this comes at a cost of more complex reconstruction that is computationally prohibitive. In this work we develop rapid reconstruction pipeline for BUDA-cEPI to pave the way for its deployment in routine clinical and neuroscientific applications.

View Article and Find Full Text PDF
Article Synopsis
  • Vancomycin is an important last-resort antibiotic for treating Gram-positive infections, but it is ineffective against Gram-negative bacteria (GNB).
  • A new derivative called VanNHdipi, created by altering vancomycin’s sugar component, shows up to 100 times greater effectiveness against vancomycin-resistant bacteria and also impacts cell wall and membrane integrity differently than vancomycin.
  • VanNHdipi effectively inactivates metallo-β-lactamases (MBLs), resensitizing resistant bacteria to carbapenems, highlighting its potential in addressing antibiotic resistance.
View Article and Find Full Text PDF

In modern magnetic resonance imaging, it is common to use phase constraints to reduce sampling requirements along Fourier-encoded spatial dimensions. In this work, we investigate whether phase constraints might also be beneficial to reduce sampling requirements along spatial dimensions that are measured using non-Fourier encoding techniques, with direct relevance to approaches that use tailored spatially-selective radiofrequency (RF) pulses to perform spatial encoding along the slice dimension in a 3D imaging experiment. In the first part of the paper, we use the Cramér-Rao lower bound to examine the potential estimation theoretic benefits of using phase constraints.

View Article and Find Full Text PDF

Purpose: To develop a 3D spherical EPTI (sEPTI) acquisition and a comprehensive reconstruction pipeline for rapid high-quality whole-brain submillimeter and QSM quantification.

Methods: For the sEPTI acquisition, spherical k-space coverage is utilized with variable echo-spacing and maximum k ramp-sampling to improve efficiency and signal incoherency compared to existing EPTI approaches. For reconstruction, an iterative rank-shrinking B estimation and odd-even high-order phase correction algorithms were incorporated into the reconstruction to better mitigate artifacts from field imperfections.

View Article and Find Full Text PDF

The rise in antimicrobial resistance, the increasing occurrence of bacterial, and fungal infections, and the challenges posed by polymicrobial biofilms necessitate the exploration of innovative therapeutic strategies. Silver-based antimicrobials have garnered attention for their broad-spectrum activity and multimodal mechanisms of action. However, their effectiveness against single-species or polymicrobial biofilms remains limited.

View Article and Find Full Text PDF

Biofilm-mediated wound infections pose a significant challenge due to the limitations of conventional antibiotics, which often exhibit narrow-spectrum activity, fail to eliminate recurrent bacterial contamination, and are unable to penetrate the biofilm matrix. While the search for alternatives has explored the use of metal nanoparticles and synthetic biocides, these solutions often suffer from unintended toxicity to surrounding tissues and lack controlled administration and release. In this study, we engineered a pH-responsive release-active dressing film based on carboxymethyl cellulose, incorporating a synthetic antibacterial molecule (SAM-17).

View Article and Find Full Text PDF

The increasing prevalence of drug-resistant infections caused by Gram-positive bacteria poses a significant threat to public healthcare. These pathogens exhibit not only smart resistance mechanisms but also form impenetrable biofilms on various surfaces, rendering them resilient to conventional therapies. In this study, we present the potent antibacterial activity of a synthetic ion transporter T against multi-drug resistant (MDR) Gram-positive pathogens, with minimum inhibitory concentration (MIC) values ranging from 0.

View Article and Find Full Text PDF

Management of infections at ocular injury often requires prolonged and high dose of antibiotic, which is associated with challenges of antibiotic resistance and bacterial biofilm formation. Tissue glues are commonly used for repairing ocular tissue defects and tissue regeneration, but they are ineffective in curing infection. There is a critical need for antibacterial ocular bio-adhesives capable of both curing infection and aiding wound closure.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTIs) pose a significant challenge in hospital settings. Current solutions available on the market involve incorporating antimicrobials and antiseptics into catheters. However, challenges such as uncontrolled release leading to undesirable toxicity, as well as the prevalence of antimicrobial resistance reduce the effectiveness of these solutions.

View Article and Find Full Text PDF

Purpose: To investigate the feasibility of diffusion tensor brain imaging at 0.55T with comparisons against 3T.

Methods: Diffusion tensor imaging data with 2 mm isotropic resolution was acquired on a cohort of five healthy subjects using both 0.

View Article and Find Full Text PDF

Purpose: The performance of modern image reconstruction methods is commonly judged using quantitative error metrics like root mean squared-error and the structural similarity index, which are calculated by comparing reconstructed images against fully sampled reference data. In practice, the reference data will contain noise and is not a true gold standard. In this work, we demonstrate that the "hidden noise" present in reference data can substantially confound standard approaches for ranking different image reconstruction results.

View Article and Find Full Text PDF

The rise of multidrug-resistant bacterial infections and the dwindling supply of newly approved antibiotics have emerged as a grave threat to public health. Toward the ever-growing necessity of the development of novel antimicrobial agents, herein, we synthesized a series of cationic amphiphilic biocides featuring two cationic headgroups separated by different hydrophobic spacers, accompanied by the inclusion of two lipophilic tails through cleavable ester functionality. The detailed aggregation properties offered by these biocides were investigated by small-angle neutron scattering (SANS) and conductivity.

View Article and Find Full Text PDF

Despite advancements in preventive measures and hospital protocols, surgical site infections (SSIs) remain a significant concern following surgeries. Sutures, commonly used for wound closure, can serve as a platform for microbial adherence and contamination, leading to extensive debridement and recurrent antibiotic therapy. The emergence of drug resistance and the formation of biofilms on sutures have further complicated the management of SSIs.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) in pathogenic bacteria, expedited by the overuse and misuse of antibiotics, necessitates the development of a rapid and pan-territorially accessible diagnostic protocol for resistant bacterial infections, which would not only enable judicious prescription of drugs, leading to infection control but also augment AMR surveillance. In this study, we introduce for the first time a "" terbium (Tb) photoluminescence assay supported on a paper-based platform for rapid point-of-care (POC) detection of β-lactamase (BL)-producing bacteria. We strategically conjugated biphenyl-4-carboxylic acid (), a potent Tb sensitizer, with cephalosporin to engineer a BL substrate , where the energy transfer to terbium is arrested.

View Article and Find Full Text PDF

Gram-negative bacterial infections pose a significant challenge due to two major resistance elements, including the impermeability of the outer membrane and the overexpression of efflux pumps, which contribute to antibiotic resistance. Additionally, the coexistence of multispecies superbugs in mixed species biofilms further complicates treatment, as these infections are refractory to most antibiotics. To address this issue, combining obsolete antibiotics with non-antibiotic adjuvants that target bacterial membranes has shown promise in combating antibacterial resistance.

View Article and Find Full Text PDF

Wound dressings play a crucial role in facilitating optimal wound healing and protecting against microbial infections. However, existing commercial options often fall short in addressing chronic infections due to antibiotic resistance and the limited spectrum of activity against both Gram-positive and Gram-negative bacteria frequently encountered at wound sites. Additionally, complex fabrication processes and cumbersome administration strategies pose challenges for cost-effective wound dressing development.

View Article and Find Full Text PDF