Introduction: Acquired gene amplification, exon 14 skip mutations, or fusions can emerge as resistance mechanisms to tyrosine kinase inhibitors (TKIs) in patients with lung cancer. The efficacy and safety of combining MET TKIs (such as crizotinib, capmatinib, or tepotinib) with parent TKIs to target acquired MET resistance are not well characterized.
Methods: Multi-institutional retrospective chart review identified 83 patients with metastatic oncogene-driven NSCLC that were separated into the following two pairwise matched cohorts: (1) MET cohort (n = 41)-patients with acquired MET resistance continuing their parent TKI with a MET TKI added or (2) Chemotherapy cohort (n = 42)-patients without any actionable resistance continuing their parent TKI with a platinum-pemetrexed added.
Patients with metastatic NSCLC bearing a ROS1 gene fusion usually experience prolonged disease control with ROS1-targeting tyrosine kinase inhibitors (TKI), but significant clinical heterogeneity exists in part due to the presence of co-occurring genomic alterations. Here, we report on a patient with metastatic NSCLC with a concurrent ROS1 fusion and KRAS p.G12C mutation at diagnosis who experienced a short duration of disease control on entrectinib, a ROS1 TKI.
View Article and Find Full Text PDFIsolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall.
View Article and Find Full Text PDFBackground: ROS1 tyrosine kinase inhibitors (TKIs) have demonstrated significant clinical benefit for ROS1+ NSCLC patients. However, TKI resistance inevitably develops through ROS1 kinase domain (KD) modification or another kinase driving bypass signaling. While multiple TKIs have been designed to target ROS1 KD mutations, less is known about bypass signaling in TKI-resistant ROS1+ lung cancers.
View Article and Find Full Text PDFPurinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system. This review discusses the contribution of purinergic P2Y receptors to endothelial dysfunction (ED) in numerous cardiovascular diseases (CVDs).
View Article and Find Full Text PDFAngiogenic vasa vasorum (VV) expansion plays an essential role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH), a cardiovascular disease. We previously showed that extracellular ATP released under hypoxic conditions is an autocrine/paracrine, the angiogenic factor for pulmonary artery (PA) VV endothelial cells (VVECs), acting via P2Y purinergic receptors (P2YR) and the Phosphoinositide 3-kinase (PI3K)-Akt-Mammalian Target of Rapamycin (mTOR) signaling. To further elucidate the molecular mechanisms of ATP-mediated VV angiogenesis, we determined the profile of ATP-inducible transcription factors (TFs) in VVECs using a TranSignal protein/DNA array.
View Article and Find Full Text PDFIntroduction: ROS1 gene fusions are a well-characterized class of oncogenic driver found in approximately 1% to 2% of NSCLC patients. ROS1-directed therapy in these patients is more efficacious and is associated with fewer side effects compared to chemotherapy and is thus now considered standard-of-care for patients with advanced disease. Consequently, accurate detection of ROS1 rearrangements/fusions in clinical tumor samples is vital.
View Article and Find Full Text PDFContext .- In an era in which testing of patient tumor material for molecular and other ancillary studies is of increasing clinical importance for selection of therapy, the ability to test on small samplings becomes critical. Often, small samplings are rapidly depleted in the diagnostic workup or are insufficient for multiple ancillary testing approaches.
View Article and Find Full Text PDFAngiogenic expansion of the vasa vasorum (VV) is an important contributor to pulmonary vascular remodeling in the pathogenesis of pulmonary hypertension (PH). High proliferative potential endothelial progenitor-like cells have been described in vascular remodeling and angiogenesis in both systemic and pulmonary circulations. However, their role in hypoxia-induced pulmonary artery (PA) VV expansion in PH is not known.
View Article and Find Full Text PDFBackground: The asthma-associated gene urokinase plasminogen activator receptor (uPAR) may be involved in epithelial repair and airway remodelling. These processes are not adequately targeted by existing asthma therapies. A fuller understanding of the pathways involved in remodelling may lead to development of new therapeutic opportunities.
View Article and Find Full Text PDFBackground: Platelets contribute to vascular homeostasis and angiogenesis through the release of multiple growth factors, cytokines and nucleotides, such as ATP and ADP. Recent reports have demonstrated a marked growth-promoting effect of total platelet extracts and selected platelet growth factors on therapeutic angiogenesis. However, since endogenous adenine nucleotides are rapidly degraded during the platelet isolation and storage, we examined whether supplementing a platelet-derived extract with exogenous adenine nucleotides would augment their pro-angiogenic effects.
View Article and Find Full Text PDFExtracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC.
View Article and Find Full Text PDFLoss of heterozygosity (LOH) and homozygous deletions at chromosome 3p21.3 are common in both small and nonsmall cell lung cancers, indicating the likely presence of tumor suppressor genes (TSGs). Although genetic and epigenetic changes within this region have been identified, the functional significance of these changes has not been explored.
View Article and Find Full Text PDFAirway epithelial damage is a cardinal feature of chronic asthma. Agents which enhance epithelial repair without triggering uncontrolled fibrosis of the mesenchyme would be predicted to be useful in the management of asthma. We have developed a repeat wound model using mucociliated human bronchial epithelial cell (HBEC) cultures to define the key pathways involved in airway epithelial repair, and to study the effects of potential therapeutic agents on epithelial repair in a chronic setting.
View Article and Find Full Text PDF