Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high levels in colostrum and early milk.
View Article and Find Full Text PDFRecent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury.
View Article and Find Full Text PDFObjective: The objective of this study was to determine the incidence of hydrocortisone-associated gastrointestinal bleeding (GIB) in infants <3 months and compare rates with or without stress ulcer prophylaxis.
Study Design: Retrospective cohort study of NICU patients <3 months who received hydrocortisone for hypotension. Three logistic regressions were conducted for adjusted associations between GIB, necrotizing enterocolitis (NEC), or infection and clinical characteristics.
Necrotizing enterocolitis (NEC) is a complex, multifactorial gastrointestinal disorder predominantly affecting preterm infants. The pathogenesis of this condition involves a complex interplay between intestinal barrier dysfunction, microbial dysbiosis, and an altered immune response. This study investigates the potential role of endogenous hyaluronan (HA) in both the early phases of intestinal development and in the context of NEC-like intestinal injury.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) continues to be a leading cause of morbidity and mortality in preterm infants. As modern medicine significantly improves the survival of extremely premature infants, the persistence of NEC underscores our limited understanding of its pathogenesis. Due to early delivery, a preterm infant's exposure to amniotic fluid (AF) is abruptly truncated.
View Article and Find Full Text PDFEnteroids are in vitro models to study gastrointestinal pathologies and test personalized therapeutics; however, the inherent complexity of enteroids often renders standard gene editing approaches ineffective. Here, we introduce a refined lentiviral transfection protocol, ensuring sufficient lentiviral engagement with enteroids while considering spatiotemporal growth variability throughout the extracellular matrix. Additionally, we highlight a selection process for transduced cells, introduce a protocol to accurately measure transduction efficiency, and explore methodologies to gauge effects of gene knockdown on biological processes.
View Article and Find Full Text PDFPharmacokinetic models rarely undergo external validation in vulnerable populations such as critically ill infants, thereby limiting the accuracy, efficacy, and safety of model-informed dosing in real-world settings. Here, we describe an opportunistic approach using dried blood spots (DBS) to evaluate a population pharmacokinetic model of metronidazole in critically ill preterm infants of gestational age (GA) ≤31 weeks from the Metronidazole Pharmacokinetics in Premature Infants (PTN_METRO, NCT01222585) study. First, we used linear correlation to compare 42 paired DBS and plasma metronidazole concentrations from 21 preterm infants [mean (SD): post natal age 28.
View Article and Find Full Text PDFObjectives: Sleep deprivation is a risk factor for delirium development, which is a frequent complication of intensive care unit admission. Melatonin has been used for both delirium prevention and treatment. Melatonin safety, efficacy, and dosing information in neonates and infants is lacking.
View Article and Find Full Text PDFObjective: Probiotic supplementation is associated with health benefits in preterm infants. The 2021 American Academy of Pediatrics (AAP) statement on probiotic use advised caution, citing heterogeneity and absence of federal regulation. We assessed the impact of the AAP statement and current institution-wide patterns of probiotic use across neonatal intensive care units (NICU) across the United States.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is the leading cause of morbidity and mortality in preterm infants. NEC is multifactorial and the result of a complex interaction of feeding, dysbiosis, and exaggerated inflammatory response. Feeding practices in the neonatal intensive care units (NICUs) can vary among institutions and have significant impact on the vulnerable gastointestinal tract of preterm infants.
View Article and Find Full Text PDFProcalcitonin (PCT) is a biomarker for sepsis, but its utility has not been investigated in necrotizing enterocolitis (NEC). Necrotizing enterocolitis is a devastating multisystem disease of infants that in severe cases requires surgical intervention. We hypothesize that an elevated PCT will be associated with surgical NEC.
View Article and Find Full Text PDFThe intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present.
View Article and Find Full Text PDFNEC remains one of the most common causes of mortality and morbidity in preterm infants. Animal models of necrotizing enterocolitis (NEC) have been crucial in improving our understanding of this devastating disease and identifying biochemical pathways with therapeutic potential. The pathogenesis of NEC remains incompletely understood, with no specific entity that unifies all infants that develop NEC.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) continues to be one of the most common causes of mortality and morbidity in preterm infants. Although not fully elucidated, studies suggest that prematurity, formula feeding, imbalanced vascular supply, and altered bacterial colonization play major roles in the pathogenesis of NEC. NEC is characterized by increased cytokine release and leukocyte infiltration.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) continues to be a major cause of morbidity and mortality in preterm infants. Despite decades of research in NEC, no reliable biomarkers can accurately diagnose NEC or predict patient prognosis. The recent emergence of multi-omics could potentially shift NEC biomarker discovery, particularly when evaluated using systems biology techniques.
View Article and Find Full Text PDFIn vitro scratch wound assays are commonly used to investigate the mechanisms and characteristics of epithelial healing in a variety of tissue types. Here, we describe a protocol to generate a two-dimensional (2D) monolayer from three-dimensional (3D) non-human primate enteroids derived from intestinal crypts of the terminal ileum. These enteroid-derived monolayers were then utilized in an in vitro scratch wound assay to test the ability of hyaluronan 35 kDa (HA35), a human milk HA mimic, to promote cell migration and proliferation along the epithelial wound edge.
View Article and Find Full Text PDFNeonates with congenital heart disease (CHD) are at an increased risk of developing necrotizing enterocolitis (NEC), an acute inflammatory intestinal injury most commonly associated with preterm infants. The rarity of this complex disease, termed cardiac NEC, has resulted in a dearth of information on its pathophysiology. However, a higher incidence in term infants, effects on more distal regions of the intestine, and potentially a differential immune response may distinguish cardiac NEC as a distinct condition from the more common preterm, classical NEC.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is a devastating disease affecting preterm infants, characterized by intestinal inflammation and necrosis. Enteroids have recently emerged as a promising system to model gastrointestinal pathologies. However, currently utilized methods for enteroid manipulation either lack access to the apical surface of the epithelium (three-dimensional [3D]) or are time-consuming and resource-intensive (two-dimensional [2D] monolayers).
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC), an inflammatory disease of the intestine, is a common gastrointestinal emergency among preterm infants. Intestinal barrier dysfunction, hyperactivation of the premature immune system, and dysbiosis are thought to play major roles in the disease. Human milk (HM) is protective, but the mechanisms underpinning formula feeding as a risk factor in the development of NEC are incompletely understood.
View Article and Find Full Text PDFBackground: Cefotaxime shortage in 2015 led to increased ceftazidime use in the neonatal intensive care unit (NICU).
Objective: The purpose was to explore whether ceftazidime increases risk for development of resistant gram-negative organisms.
Methods: Retrospective evaluation of NICU patients with cultures positive for , , species, or between January1, 2015 and August 31, 2020.
Increasing evidence suggests that prolonged antibiotic therapy in preterm infants is associated with increased mortality and morbidities, such as necrotizing enterocolitis (NEC), a devastating gastrointestinal pathology characterized by intestinal inflammation and necrosis. While a clinical correlation exists between antibiotic use and the development of NEC, the potential causality of antibiotics in NEC development has not yet been demonstrated. Here, we tested the effects of systemic standard-of-care antibiotic therapy for ten days on intestinal development in neonatal mice.
View Article and Find Full Text PDFObjective: In utero inflammation is associated with bronchopulmonary dysplasia (BPD) in preterm infants. We hypothesized that maternal tobacco exposure (TE) might induce placental neutrophil infiltration, increasing the risk for BPD. Study design: We compared the composite outcome of BPD and death in a prospective pilot study of TE and no-TE mothers and their infants born <32 weeks.
View Article and Find Full Text PDF