Publications by authors named "Hala A Kazi"

DTNBP1 (dystrobrevin binding protein 1) is a leading candidate susceptibility gene in schizophrenia and is associated with working memory capacity in normal subjects. In schizophrenia, the encoded protein dystrobrevin-binding protein 1 (dysbindin-1) is often reduced in excitatory cortical limbic synapses. We found that reduced dysbindin-1 in mice yielded deficits in auditory-evoked response adaptation, prepulse inhibition of startle, and evoked γ-activity, similar to patterns in schizophrenia.

View Article and Find Full Text PDF

Variations in the gene encoding the novel protein dysbindin-1 (DTNBP1) are among the most commonly reported genetic variations associated with schizophrenia. Recent studies show that those variations are also associated with cognitive functioning in carriers with and without psychiatric diagnoses, suggesting a general role for dysbindin-1 in cognition. Such a role could stem from the protein's known ability to affect neuronal glutamate release.

View Article and Find Full Text PDF

Olfactory deficits, observed in schizophrenia, may be associated with a disruption of synaptic transmission in the olfactory system. Using immunohistochemistry and optical densitometry, we assessed the integrity of the synaptic connection between olfactory receptor neurons and olfactory bulb target neurons in schizophrenia by comparing the level of eight proteins, expressed in the olfactory bulb glomeruli, among schizophrenia and control subjects. In schizophrenia, no change was observed in the levels of OMP, GAP43 and NCAM, proteins expressed by olfactory receptor neurons, suggesting an intact innervation of the olfactory bulb by these neurons.

View Article and Find Full Text PDF