Publications by authors named "Hakseon Lee"

This review explores the integration of graphene and liquid crystals to advance sensor technologies across multiple domains, with a focus on recent developments in thermal and infrared sensing, flexible actuators, chemical and biological detection, and environmental monitoring systems. The synergy between graphene's exceptional electrical, optical, and thermal properties and the dynamic behavior of liquid crystals leads to sensors with significantly enhanced sensitivity, selectivity, and versatility. Notable contributions of this review include highlighting key advancements such as graphene-doped liquid crystal IR detectors, shape-memory polymers for flexible actuators, and composite hydrogels for environmental pollutant detection.

View Article and Find Full Text PDF

Owing to the additional functionalities endowed by nanoparticle dopants, liquid crystals doped with nanoparticles are promising optical materials in a wide range of applications. In this study, we exploited the photothermal effect of reduced graphene oxide (rGO)-doped 5CB nematic liquid crystals (LC-rGO) to develop an infrared (IR) detector that is not only sensitive to IR but also measures the temperature and energy deposited in the detector. We demonstrate that rGO doping in LCs significantly enhances the IR absorption and transforms the light energy into thermal energy through the photothermal effect.

View Article and Find Full Text PDF