Publications by authors named "Hakon N Pettersen"

Aims: Impaired standardization of echocardiograms may increase inter-operator variability. This study aimed to determine whether the real-time guidance of experienced sonographers by deep learning (DL) could improve the standardization of apical recordings.

Methods And Results: Patients ( = 88) in sinus rhythm referred for echocardiography were included.

View Article and Find Full Text PDF

Aims: Apical foreshortening leads to an underestimation of left ventricular (LV) volumes and an overestimation of LV ejection fraction and global longitudinal strain. Real-time guiding using deep learning (DL) during echocardiography to reduce foreshortening could improve standardization and reduce variability. We aimed to study the effect of real-time DL guiding during echocardiography on measures of LV foreshortening and inter-observer variability.

View Article and Find Full Text PDF

Measurements of cardiac function such as left ventricular ejection fraction and myocardial strain are typically based on 2-D ultrasound imaging. The reliability of these measurements depends on the correct pose of the transducer such that the 2-D imaging plane properly aligns with the heart for standard measurement views and is thus dependent on the operator's skills. We propose a deep learning tool that suggests transducer movements to help users navigate toward the required standard views while scanning.

View Article and Find Full Text PDF