Synthesis of adenine derivative of triphosphono-gamma-(Z)-ethylidene-2,3-dimethoxybutenolide 4 was accomplished by treatment of phosphonate 3 with 5-phosphoribosyl 1-pyrophosphate in the presence of 5-phosphoribosyl 1-pyrophosphate synthetase. It was found that triphosphonate 4 functions as an irreversible stoichiometric inactivator of the Escherichia coli ribonucleoside diphosphate reductase (RDPR). Triphosphonate 4 exhibited potent inhibitory activity against murine leukemias (L1210 and P388), breast carcinoma (MCF7), and human T-lymphoblasts (Molt4/C8 and CEM/0) cell lines.
View Article and Find Full Text PDFRacemic 7-(phenylacetamido)-1-dethia-3-aza-1-carba-2-oxacephem 3 was synthesized and found to possess antibacterial activity against Staphylococcus aureus FDA 209P, Escherichia coli ATCC 39188, Pseudomonas aeruginosa 1101-75 and Klebsiella pneumoniae NCTC 418 as well as the beta-lactamase producing organisms E. coli A9675 and P. aeruginosa 18S-H and the methicillin-resistant organism S.
View Article and Find Full Text PDFBy use of pro-dual-drug concept the synthesis of 6-beta-[(R)-2-(clavaminio-9-N-yl)-2-(4-hydroxyphenylacetamido)]penicillanic acid (10), 6-beta-[(R)-2-(amino)-2-(4-(clavulano-9-O-yl)phenylacetamido)]penicillanic acid (13), (Z)-4-[2-(amoxycillin-4-O-yl)ethylidene]-2-(clavulano-9-O-yl)-3-methoxy-Delta(alpha,beta)-butenolide (19), and 3-[(amoxicillin-4-O-yl)methyl]-7-(phenoxyacetamido)-(1-oxo)-3-cephem-4-carboxylic acid (23) was accomplished. Unlike penicillin G, ampicillin, or amoxicillin, these four heretofore undescribed compounds 10, 13, 19, and 23 showed notable activity against beta-lactamase (betaL) producing microorganisms, Staphylococcus aureus A9606, S. aureus A15091, S.
View Article and Find Full Text PDFA novel cephalosporin derivative of monohydroguaiaretic acid (cephem-M(3)N, 7) was synthesized and found to possess anticancer activity against human leukemia (K562), breast carcinoma (MCF7), human lung cancer (A549), human colon cancer (Colo205) and pancreatic cancer cells (Capan2 and MiaPaCa2). A tumor targeting fusion protein (dsFv3-beta-lactamase) was also used in conjunction with cephem-based M(3)N 7 and its potency toward K562, MCF7, A549, Colo205, Capan2, and MiaPaCa2 was found to approach that of the free M(3)N (4). In the presence of dsFv3-beta-lactamase, tumor cells were found to be much more susceptible to conjugate 7 than normal human embryonic lung (HEL) cells and normal fibroblasts (Hef522).
View Article and Find Full Text PDFThiols are the most reactive nucleophilic reagents among the biological models investigated. The reactivity of butenolides 1a-c, 2-4, and 6-8 toward L-cysteine, a model biological nucleophile, was studied spectrophotometrically. The rates of the reactions were measured and correlated with antitumour activity of these molecules.
View Article and Find Full Text PDFA novel uracil-containing enediyne was synthesized by the fusion at N(1) and N(3) of uracil with an 11-membered cyclic enediyne. Compound was found to be stable against cycloaromatization at 80 degreesC. Thus, it did not cause DNA-damage.
View Article and Find Full Text PDFA novel strategy was developed for the synthesis of N(7)-purine acyclic nucleosides 9 and 14. The key step involved the reaction between [2-(p-methoxyphenyloxy)ethoxy]methyl chloride and N(9)-tritylated nucleobases 6 or 11 followed by concomitant self-detritylation. N(7)-Guanine acyclic nucleoside 9 exhibited antiviral activity, but was phosphorylated by both HSV and Vero cell thymidine kinases.
View Article and Find Full Text PDF6-Chloropurine derivatives of gamma-(Z)-ethylidene-2,3-dimethoxybutenolide 3a, gamma-(Z)-ethylidene-2-methoxy-3-(4-nitro)benzyloxybutenolide 3b, gamma-(Z)-ethylidene-2-(4-nitro)benzyloxy-3-methoxybutenolide 3c, gamma-(Z)-ethylidene-2,3-di(4-nitro)benzyloxybutenolide 3d, and dimethylphosphono-gamma-(Z)-ethylidene-2,3-dimethoxybutenolide 11 as well as the adenine derivative of gamma-(Z)-ethylidene-2,3-dimethoxybutenolide 6 were synthesized. The key steps in the high-yield synthesis of 6 involved hydration/dehydration of the C(4)=C(5) in the precursor 3a. In the presence of NH4OH at elevated temperature, 3a underwent a reverse Michael-type addition with water to produce hydrate 5.
View Article and Find Full Text PDFPlakoglobin is a cytoplasmic protein and a homologue of beta-catenin and Armadillo of Drosophila with similar adhesive and signaling functions. These proteins interact with cadherins to mediate cell-cell adhesion and associate with transcription factors to induce changes in the expression of genes involved in cell fate determination and proliferation. Unlike the relatively well characterized role of beta-catenin in cell proliferation via activation of c-MYC and cyclin D1 gene expression, the signaling function of plakoglobin in regulation of cell growth is undefined.
View Article and Find Full Text PDFRacemic cis-6-(phenylacetamido)carbapenem (21), 2-hydroxycarbonyl-cis-6-(phenylacetamido)carbapenem (22), 2-methoxycarbonyl-cis-6-(phenylacetamido)carbapenem (30), 2-methoxycarbomethyl-cis-6-(phenylacetamido)carbapenem (33), 2-hydroxyethyl-cis-6-(phenylacetamido)carbapenem (34), and 2-acetoxyethyl-cis-6-(phenylacetamido)carbapenem (35) were synthesized. Formation of the carbapenem nuclei in 21, 22, and 30 involved dehydrophosphonation of the corresponding 2-diphenylphosphono-6-(phenylacetamido)carbapenam precursors 14, 15, and 28 using trimethylsilyl triflate and 1,8-diazabicyclo[5.4.
View Article and Find Full Text PDFNew isodethiaazacephems (+/-)-3, (+/-)-4, and (+/-)-10 as well as the 4-sulfonylated isodethiaazacepham (+/-)-5 were synthesized by chemical methods and found to possess biological activity against five pathogenic microorganisms in vitro. The mesylate and the triflate functionalities in (+/-)-3 and (+/-)-4, acting as effective leaving groups, enhanced remarkably the biological activity in comparison with the parent 3-hydroxyisodethiaazacephem (+/-)-10. The mode of action related to (+/-)-3 and (+/-)-4 can be explained by a [1,4]-elimination process.
View Article and Find Full Text PDF