We have investigated the CO-recombination kinetics after flash photolysis of CO from the "half-reduced" cytochrome c oxidase as a function of pH. In addition, the reaction was investigated in mutant enzymes in which Lys(I-362) and Ser(I-299), located approximately in the middle of the K-pathway and near the enzyme surface, respectively, were modified. Laser-flash induced dissociation of CO is followed by rapid internal electron transfer from heme a(3) to a.
View Article and Find Full Text PDFThe redox-driven proton pump cytochrome c oxidase is that enzymatic machinery of the respiratory chain that transfers electrons from cytochrome c to molecular oxygen and thereby splits molecular oxygen to form water. To investigate the reaction mechanism of cytochrome c oxidase on the single vibrational level, we used time-resolved step-scan Fourier transform infrared spectroscopy and studied the dynamics of the reduced enzyme after photodissociation of bound carbon monoxide across the mid-infrared range (2300-950 cm(-1)). Difference spectra of the bovine complex were obtained at -20 degrees C with 5 micros time resolution.
View Article and Find Full Text PDF