Bacterial biofilms cause persistent infections that are difficult to treat and contribute greatly to antimicrobial resistance. However, high-resolution structural information on native bacterial biofilms remain very limited. This limitation is primarily due to methodological constraints associated with analyzing complex native samples.
View Article and Find Full Text PDFFunctional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process.
View Article and Find Full Text PDFWe present a multidimensional magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D H-C ssNMR spectrum and thorough peak deconvolution at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT C ssNMR spectra to differentiate signals originating from the mobile and rigid fractions of the biofilm, and qualitatively determined dynamical changes by comparing CP buildup behaviors.
View Article and Find Full Text PDFWe present a high-resolution 1D and 2D magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D H- C ssNMR spectrum and thorough peak deconvolution approach at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT C ssNMR spectra to different signals originating from the mobile and rigid fractions of the biofilm, and qualitative determined dynamical changes by comparing CP buildup behaviors.
View Article and Find Full Text PDF