Publications by authors named "Hakan Erkol"

Difficulty in heating tumors with high spatial selectivity while protecting surrounding healthy tissues from thermal harm is a challenge for cancer photothermal treatment (PTT). To mitigate this problem, PTT mediated by photothermal agents (PTAs) has been established as a potential therapeutic technique to boost selectivity and reduce damage to surrounding healthy tissues. Various gold nanoparticles (AuNP) have been effectively utilized as PTAs, mainly using strategies to target cancerous tissue and increase selective thermal damage.

View Article and Find Full Text PDF

In preclinical research, fluorescence molecular tomography (FMT) is the most sensitive imaging modality to interrogate whole-body and provide 3D distribution of fluorescent contract agents. Despite its superior sensitivity, its mediocre spatial-resolution has been the main barrier to its clinical translation. This limitation is mainly due to the high scattering of optical photons in biological tissue together with the limited boundary measurements that lead to an undetermined and ill-posed inverse problem.

View Article and Find Full Text PDF

Multiwavelength photo-magnetic imaging (PMI) is a novel combination of diffuse optics and magnetic resonance imaging, to the best of our knowledge, that yields tissue chromophore concentration maps with high resolution and quantitative accuracy. Here, we present the first experimental results, to the best of our knowledge, obtained using a spectrally constrained PMI image reconstruction method, where chromophore concentration maps are directly recovered, unlike the conventional two-step approach that requires an intermediate step of reconstructing wavelength-dependent absorption coefficient maps. The imposition of the prior spectral information into the PMI inverse problem improves the reconstructed image quality and allows recovery of highly quantitative concentration maps, which are crucial for effective cancer detection and characterization.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a multi-wavelength photo-magnetic imaging (PMI) technique that creates detailed optical absorption maps of tissue in the near-infrared range to aid photothermal therapy.
  • The researchers utilized a PMI system with four laser wavelengths to measure temperature changes in a tissue-simulating phantom and recover its optical absorption properties.
  • Results show that the absorption data closely matches measured temperatures, indicating that this method can effectively enhance the planning and accuracy of photothermal therapy treatments.
View Article and Find Full Text PDF

Photo-magnetic imaging (PMI) is an emerging optical imaging modality that showed great performance on providing absorption maps with high resolution and quantitative accuracy. As a multi-modality technology, PMI warms up the imaged object using a near infrared laser while temperature variation is measured using magnetic resonance imaging. By probing tissue at multiple wavelengths, concentration of the main tissue chromophores such as oxy- and deoxy-hemoglobin, lipid, and water are obtained then used to derive functional parameters such as total hemoglobin concentration and relative oxygen saturation.

View Article and Find Full Text PDF

Fluorescence molecular tomography (FMT) is widely used in preclinical oncology research. FMT is the only imaging technique able to provide 3D distribution of fluorescent probes within thick highly scattering media. However, its integration into clinical medicine has been hampered by its low spatial resolution caused by the undetermined and ill-posed nature of its reconstruction algorithm.

View Article and Find Full Text PDF

The dynamic response behavior of red blood cells holds the key to understanding red blood cell related diseases. In this regard, an understanding of the physiological functions of erythrocytes is significant before focusing on red blood cell aggregation in the microcirculatory system. In this work, we present a theoretical model for a photoacoustic signal that occurs when deformed red blood cells pass through a microfluidic channel.

View Article and Find Full Text PDF

This study presents a simulation-based analysis on the excitation of microcantilever in air using pulsed-laser-induced photoacoustic waves. A model was designed and coded to investigate the effects of consecutive photoacoustic waves, arising from a spherical light absorber illuminated by short laser pulses. The consecutiveness of the waves were adjusted with respect to the pulse repetition frequency of the laser to examine their cumulative effects on the oscillation of microcantilever.

View Article and Find Full Text PDF

We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions.

View Article and Find Full Text PDF

It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty.

View Article and Find Full Text PDF

We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster.

View Article and Find Full Text PDF

In this work, we present a new analytical approach to model continuous wave laser induced temperature in highly homogeneous turbid media. First, the diffusion equation is used to model light transport and a comprehensive solution is derived analytically by obtaining a special Greens' function. Next, the time-dependent bio-heat equation is used to describe the induced heat increase and propagation within the medium.

View Article and Find Full Text PDF

Bioluminescence imaging has been a popular tool in small animal imaging. During the last decade, the efforts have focused on the development of tomographic systems. However, due to the difficulties in the nature of inverse source problem, multi-modal systems have been the center of attention for the last couple of years.

View Article and Find Full Text PDF

We investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the Fourier transform for various absorption profiles.

View Article and Find Full Text PDF

The Green's function for diffusive wave propagation can be obtained by utilizing the representation theorems of the convolution type and the correlation type. In this work, the Green's function is retrieved by making use of the Robin boundary condition and the representation theorems for diffusive media. The diffusive Green's function between two detectors for photon flux is calculated by combining detector readings due to point light sources and utilizing virtual light sources at the detector positions in optical tomography.

View Article and Find Full Text PDF