Hydrogen isotopes have been widely used as powerful tracers to understand the origin of terrestrial water and the water circulation between the surface and the deep interior of the Earth. However, further quantitative understanding is hindered due to a lack of observations about the changes in D/H ratios of a slab during subduction. Here, we report hydrogen isotope data of olivine-hosted melt inclusions from active volcanoes with variable depths (90‒550 km) to the subducting Pacific slab.
View Article and Find Full Text PDFFelsic magmas produced at subduction zones have played an important role in the generation and evolution of the continental crust. For the origin of felsic magmas, processes such as fractional crystallization of mafic magmas, partial melting of crustal materials, partial melting of subducting slabs, and partial melting of pyroxenitic mantle wedge components have been proposed. Recent experimental studies have predicted that felsic melt can also be produced in the mantle wedge by the separation of slab-derived supercritical liquid beyond depths corresponding to the critical point.
View Article and Find Full Text PDF