Publications by authors named "Hajime Sugaya"

Mitochondria are essential organelles involved in the production and supply of energy in eukaryotic cells. Recently, the use of serial section scanning electron microscopy (SEM) has allowed accurate three-dimensional (3D) reconstructed images of even complex organelle structures. Using this method, ultrathin sections of etiolated cotyledons were observed 4 days after germination of Arabidopsis thaliana in the dark, and giant mitochondria were found.

View Article and Find Full Text PDF

We recently achieved targeted disruptions of cytoplasmic male sterility (CMS)-associated genes in the mitochondrial genomes of rice and rapeseed by using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). It was the first report of stable and heritable targeted gene modification of plant mitochondrial genomes. Here, we attempted to use mitoTALENs to disrupt two mitochondrial genes in the model plant Arabidopsis thaliana(Arabidopsis) using three different promoters and two types of TALENs.

View Article and Find Full Text PDF

() is a suppressor of cytoplasmic male sterility (CMS), a mitochondrion-encoded trait that has been reported in many plant species. The occurrence of CMS is considered to be independent in each lineage; hence, the question of how evolved was raised. Sugar beet resembles , a gene for quality control of the mitochondrial inner membrane.

View Article and Find Full Text PDF

Sequence-specific nucleases are commonly used to modify the nuclear genome of plants. However, targeted modification of the mitochondrial genome of land plants has not yet been achieved. In plants, a type of male sterility called cytoplasmic male sterility (CMS) has been attributed to certain mitochondrial genes, but none of these genes has been validated by direct mitochondrial gene-targeted modification.

View Article and Find Full Text PDF

The number, size and shape of polymorphic plant mitochondria are determined at least partially by mitochondrial fission. Arabidopsis mitochondria divide through the actions of a dynamin-related protein, DRP3A. Another plant-specific factor, ELM1, was previously shown to localize DRP3A to mitochondrial fission sites.

View Article and Find Full Text PDF