Publications by authors named "Hajime Hirase"

As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.

View Article and Find Full Text PDF

The brain's ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na, K, ATPase.

View Article and Find Full Text PDF

Bioluminescence imaging (BLI) relies on the biochemical reaction between substrate and enzyme that triggers light emission upon convergence. Here, we present a protocol to study molecular oxygen dynamics in the in vivo mouse brain using the oxygen-dependent reaction between luciferase and its substrate. We describe steps for acute craniotomy, viral transfection, substrate administration, imaging, and analysis of hypoxic pockets.

View Article and Find Full Text PDF

Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (o) dynamics under physiological conditions.

View Article and Find Full Text PDF

The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments.

View Article and Find Full Text PDF

Maternal nutrient intake influences the health of the offspring via microenvironmental systems in digestion and absorption. Maternal high fructose diet (HFD) impairs hippocampus-dependent memory in adult female rat offspring. However, the underlying mechanisms remain largely unclear.

View Article and Find Full Text PDF

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI). Noradrenaline levels are increased after TBI, and the amplitude of the increase in noradrenaline predicts both the extent of injury and the likelihood of mortality. Glymphatic impairment is both a feature of and a contributor to brain injury, but its relationship with the injury-associated surge in noradrenaline is unclear.

View Article and Find Full Text PDF

L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.

View Article and Find Full Text PDF

Extracellular potassium concentration ([K]) is known to increase as a function of arousal. [K] is also a potent modulator of transmitter release. Yet, it is not known whether [K] is involved in the neuromodulator release associated with behavioral transitions.

View Article and Find Full Text PDF

Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic Ca elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes enwrap with their endfeet. However, the causal relationship between astrocytic Ca elevations and blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca signaling show normal sensory hyperemia.

View Article and Find Full Text PDF

Albumin, a protein produced by liver hepatocytes, represents the most abundant protein in blood plasma. We have previously engineered a liver-targeting adeno-associated viral vector (AAV) that expresses fluorescent protein-tagged albumin to visualize blood plasma in mice. While this approach is versatile for imaging in adult mice, transgene expression vanishes when AAV is administered in neonates due to dilution of the episomal AAV genome in the rapidly growing liver.

View Article and Find Full Text PDF

Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are the most common type of glial cells in the brain and have unique roles tied to their various subpopulations, particularly in relation to brain health and disease.
  • A specific glycosylation of the PTPRZ protein, crucial for astrocyte function, is prevalent in reactive astrocytes during demyelination, but its role across different diseases has not been fully explored.
  • Research shows that glycosylated PTPRZ is found in damaged brain areas of multiple sclerosis patients and in certain mouse models of demyelination, indicating that this modification is significant for the behavior and characteristics of astrocytes in disease contexts.
View Article and Find Full Text PDF

Studying blood microcirculation is vital for gaining insights into vascular diseases. Blood flow imaging in deep tissue is currently achieved by acute administration of fluorescent dyes in the blood plasma. This is an invasive process, and the plasma fluorescence decreases within an hour of administration.

View Article and Find Full Text PDF
Article Synopsis
  • Potassium ions (K+) are vital electrolytes in biological systems and understanding their role can enhance our knowledge of various processes.
  • Researchers reported the crystal structure of a K+ biosensor, GINKO1, and developed an enhanced version called GINKO2 through structure-guided optimization.
  • GINKO2 has improved sensitivity and specificity, enabling effective in vivo detection and imaging of K+ dynamics in different organisms like bacteria, plants, and mice.
View Article and Find Full Text PDF

Sleep has a complex micro-architecture, encompassing micro-arousals, sleep spindles and transitions between sleep stages. Fragmented sleep impairs memory consolidation, whereas spindle-rich and delta-rich non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep promote it. However, the relationship between micro-arousals and memory-promoting aspects of sleep remains unclear.

View Article and Find Full Text PDF

Photothrombosis is a widely used model of ischemic stroke in rodent experiments. In the photothrombosis model, the photosensitizer rose bengal (RB) is systemically introduced into the blood stream and activated by green light to induce aggregation of platelets that eventually cause vessel occlusion. Since the activation of RB is a one-photon phenomenon and the molecules in the illuminated area (light path) are subject to excitation, targeting of thrombosis is unspecific, especially in the depth dimension.

View Article and Find Full Text PDF

Solute-binding proteins (SBPs) have evolved to balance the demands of ligand affinity, thermostability, and conformational change to accomplish diverse functions in small molecule transport, sensing, and chemotaxis. Although the ligand-induced conformational changes that occur in SBPs make them useful components in biosensors, they are challenging targets for protein engineering and design. Here, we have engineered a d-alanine-specific SBP into a fluorescence biosensor with specificity for the signaling molecule d-serine (D-serFS).

View Article and Find Full Text PDF

The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support.

View Article and Find Full Text PDF

Cerebral oedema develops after anoxic brain injury. In two models of asphyxial and asystolic cardiac arrest without resuscitation, we found that oedema develops shortly after anoxia secondary to terminal depolarizations and the abnormal entry of CSF. Oedema severity correlated with the availability of CSF with the age-dependent increase in CSF volume worsening the severity of oedema.

View Article and Find Full Text PDF

The hypothesis that reversed, excitatory GABA may be involved in various brain pathologies, including epileptogenesis, is appealing but controversial because of the technical difficulty of probing endogenous GABAergic synaptic function in vivo. We overcome this challenge by non-invasive extracellular recording of neuronal firing responses to optogenetically evoked and spontaneously occurring inhibitory perisomatic GABAergic field potentials, generated by individual parvalbumin interneurons on their target pyramidal cells. Our direct probing of GABAergic transmission suggests a rather anecdotal participation of excitatory GABA in two specific models of epileptogenesis in the mouse CA3 circuit in vivo, even though this does not preclude its expression in other brain areas or pathological conditions.

View Article and Find Full Text PDF

Cortical spreading depolarization (CSD) is a propagating wave of tissue depolarization characterized by a large increase of extracellular potassium concentration and prolonged subsequent electrical silencing of neurons. Waves of CSD arise spontaneously in various acute neurological settings, including migraine aura and ischemic stroke. Recently, we have reported that pan-inhibition of adrenergic receptors (AdRs) facilitates the normalization of extracellular potassium after acute photothrombotic stroke in mice.

View Article and Find Full Text PDF