Publications by authors named "Hajime Fukano"

DNA-encoded library (DEL) technology is a crucial tool in pharmaceutical research, rapidly identifying compounds that bind to a target of interest from an extensive pool of compounds. In this study, we propose a new method for generating single-stranded DELs (ssDELs) with compounds at the 3' end. The introduction of uniquely designed hairpin-shaped headpieces containing deoxyuridine (NC-HP) and the use of a cleavage enzyme facilitate the conversion from double-stranded DELs (dsDELs) to such ssDELs.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK)-interacting kinases 1 (Mnk1) and 2 (Mnk2) modulate translation initiation through the phosphorylation of eukaryotic translation initiation factor 4E, which promotes tumorigenesis. However, Mnk1 and Mnk2 are dispensable in normal cells, suggesting that the inhibition of Mnk1 and Mnk2 could be effective in cancer therapy. To provide a structural basis for Mnk1 inhibition, a novel Mnk1 inhibitor was discovered and the crystal structure of Mnk1 in complex with this inhibitor was determined.

View Article and Find Full Text PDF

Several techniques to enzymatically construct a short hairpin RNA (shRNA) expression library have been reported as tools for comprehensive genetic analyses by RNA interference. Our technique constructs an shRNA expression library from 25- to 35-bp DNA fragments by fragmenting given double-stranded DNA (dsDNA). We compared the following two procedures to efficiently prepare such small DNA fragments: one is the cleavage of dsDNA with deoxyribonuclease I (DNase I) in the presence of Mn(2+) followed by blunting with T4 DNA polymerase, and the other is the introduction of nicks with DNase I in the presence of Mg(2+) followed by blunting with the Klenow fragment.

View Article and Find Full Text PDF

When several DNAs are amplified by PCR in one PCR tube, biased amplification is known to occur because amplification efficiency differs from one DNA to another. Therefore, we conducted PCR in the water in oil-emulsion (W/O emulsion) to examine whether the procedure allows the uniform amplification of several DNAs. In the amplification of a model library consisting of two clones, the emulsification of the PCR mixture successfully reduced the difference in its amplification efficiency to approximately one-seventh the value obtained without emulsification.

View Article and Find Full Text PDF

The human U6 (hU6) promoter is widely used to express short hairpin RNAs (shRNAs) in mammalian cells. To verify the validity of the generalized concept-the hU6 promoter essentially requires a purine (usually guanine) at +1 for transcription, we enzymatically constructed an arbitrary shRNA library with the following features: (1) to have any one of adenine, cytosine, guanine, and thymine at the site; (2) to comprise shRNAs of 25-30 nucleotides in stem length which are transcribed through the promoter. cDNA of the catalytic subunit of cAMP-dependent protein kinase (PKACalpha) was used as material for library construction.

View Article and Find Full Text PDF

Short interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) usually used for RNA interference (RNAi) are double-stranded RNAs (dsRNAs) of 21 base pairs. However, siRNAs and shRNAs of longer stem length have been reported to show more potent gene silencing. Here, we report a new technique to enzymatically construct shRNA libraries containing clones from firefly luciferase cDNA and Jurkat cDNA.

View Article and Find Full Text PDF

Qbeta replicase functioning in Escherichia coli is an RNA-dependent RNA polymerase composed of one phage-coded subunit and three host-coded proteins: ribosomal protein S1, and protein elongation factors EF-Tu and EF-Ts. Qbeta replicase lacking ribosomal protein S1 (alpha-less replicase) is capable of replicating some small RNAs. We attempted to create functional alpha-less replicase by co-expression of the mRNAs that code for the subunits of alpha-less replicase in a rabbit reticulocyte cell-free translation system.

View Article and Find Full Text PDF