Publications by authors named "Hajee Reyaz Ali Sahib Khilafath"

Background: In a high-energy medical linear accelerator (linac), if the interaction of photon energy is higher than the neutron binding energy of high atomic material, it emits a neutron field through photonuclear (γ, n) reaction.

Aim: The current study, evaluates the photoneutron dose equivalent (PNDE) produced between the 10 MV flattened and unflattened beams as a function of field sizes in the Elekta Versa HD™ linac.

Materials And Methods: The PNDE produced from Versa linac was recorded along the patient plane using the bubble detector personal neutron dosimeter and from the measured PNDE values, the theoretical PNDE values were simulated for various field sizes using nonlinear least-squares curve-fitting as a function of a polynomial.

View Article and Find Full Text PDF

In a high-energy medical linear accelerator (linac), if the interaction of photon energy is higher than the neutron binding energy of high atomic material, it emits a neutron field through a photonuclear reaction. The objective of this current study is to measure the photoneutron dose equivalent produces in a motorized wedge field and open field of 10 MV and 15 MV photon beams in Elekta Versa HD™ linac. The PNDE values were recorded at various positions along the patient plane using the Bubble Detector-Personal Neutron Dosimeter (BD-PND).

View Article and Find Full Text PDF

Synthesis of pure Hafnium Oxide (HfO₂), and HfO₂ doped with Gadolinium (1, 3, 5 and 7 mol%) nanoparticles (NPs) had been carried out by Precipitation and co-precipitation method using the precursor solution of Hafnium (IV) chloride (HfCl₄) and Gadolinium(III) chloride hexahydrate (GdCl₃·6H₂O) with Sodium hydroxide (NaOH) which was dissolved in deionized water. The synthesized compound was characterized and analyzed by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray analysis (EDX), UV-visible spectrophotometer, Photoluminescence (PL), Fourier Transform infrared spectroscopy (FTIR) and Raman spectroscopy. The result from X-ray diffraction showed that the Gd concentration for 7 mol% had attended directly crystalline phase of Cubic HfO₂ structure.

View Article and Find Full Text PDF