Analysis of DNA methylation in cell-free DNA reveals clinically relevant biomarkers but requires specialized protocols such as whole-genome bisulfite sequencing. Meanwhile, millions of cell-free DNA samples are being profiled by whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous Hidden Markov Model, to predict DNA methylation of cell-free DNA and, therefore, tissues-of-origin, directly from plasma whole-genome sequencing.
View Article and Find Full Text PDFCis-regulatory elements are coordinated to regulate the expression of their targeted genes. However, the joint measurement of cis-regulatory elements' activities and their interactions in spatial proximity is limited by the current sequencing approaches. We describe a method, NOMe-HiC, which simultaneously captures single-nucleotide polymorphisms, DNA methylation, chromatin accessibility (GpC methyltransferase footprints), and chromosome conformation changes from the same DNA molecule, together with the transcriptome, in a single assay.
View Article and Find Full Text PDFThe fine-scale cell-free DNA fragmentation patterns in early-stage cancers are poorly understood. We developed a de novo approach to characterize the cell-free DNA fragmentation hotspots from plasma whole-genome sequencing. Hotspots are enriched in open chromatin regions, and, interestingly, 3'end of transposons.
View Article and Find Full Text PDFBioinformatics
August 2021
Summary: Circulating cell-free DNA (cfDNA) is a promising biomarker for the diagnosis and prognosis of many diseases, including cancer. The genome-wide non-random fragmentation patterns of cfDNA are associated with the nucleosomal protection, epigenetic environment and gene expression in the cell types that contributed to cfDNA. However, current progress on the development of computational methods and understanding of molecular mechanisms behind cfDNA fragmentation patterns is significantly limited by the controlled-access of cfDNA whole-genome sequencing (WGS) dataset.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
Extracellular RNAs (exRNAs) are present in human serum. It remains unclear to what extent these circulating exRNAs may reflect human physiologic and disease states. Here, we developed SILVER-seq (Small Input Liquid Volume Extracellular RNA Sequencing) to efficiently sequence both integral and fragmented exRNAs from a small droplet (5 μL to 7 μL) of liquid biopsy.
View Article and Find Full Text PDFUsing a magnetic tweezers (MT) apparatus and an atomic force microscope (AFM), we studied the condensation of DNA induced by the cationic gemini surfactant hexyl-alpha,omega-bisdodecyldimethylammonium bromide (C12 C6 C12 Br2). Stepwise condensation events were found for forces from 0.5 to 4 pN, with a decrease in DNA extension by approximately 100 nm in each condensation event.
View Article and Find Full Text PDF