Single cell modification or hybridization technology has become a popular direction in bioengineering in recent years, with applications in clean energy, environmental stewardship, and sustainable human development. Here, we draw attention to nanoarmor, a representative achievement of cytoprotection and functionalization technology. The fundamental principles of nanoarmor need to be studied with input from multiple disciplines, including biology, chemistry, and material science.
View Article and Find Full Text PDFAntibiotics are widely found in aquatic ecosystems and pose a serious threat to human and the ecological system. Samples of surface water (SW), overlying water (OW), pore water (PW) and sediments (Sedi) were collected to investigate the spatial variability, potential sources, ecological risk (RQs) and health risks (HQs) of nine common antibiotics in Baiyangdian Lake using positive matrix factorization (PMF), and Monte Carlo simulation. Significant spatial autocorrelation of most antibiotics were observed in PW and Sedi samples rather than in SW and OW samples, and higher antibiotic levels were found in the northwest of waters and the southwest of sediments.
View Article and Find Full Text PDFThe migration of antibiotics and bacterial communities between sediments and pore water occurring in the lake, which is affected by aquatic vegetation. However, the differences in bacterial community structure and biodiversity between pore water and sediments with plants in lakes under antibiotic stress are still poorly understood. We collected pore water and sediments in both wild and cultivated regions in the Zaozhadian (ZZD) Lake to explore the characteristics of the bacterial community.
View Article and Find Full Text PDFFreshwater ecosystems are gradually becoming sinks for terrestrial microplastics (MPs), posing a potential ecological risk. Although the effects of MPs on plankton and aquatic animals in freshwater ecosystems have been given increasing attention, the toxicity of MPs to the metabolism of aquatic plants remains unclear. Here, the model aquatic plant Spirodela polyrhiza (L.
View Article and Find Full Text PDFRhizosphere microorganisms and their interactions with plants in wetlands have recently attracted much attention due to their importance in enhancing plant environmental adaptation, removing wetland pollutants, and alleviating climate change. However, the fluctuating hydrological environment of wetlands leads to more complex dynamics in the rhizosphere environment. Research progress and hotspots concerning plant-rhizosphere microorganisms under special wetland environments are still kept unclear.
View Article and Find Full Text PDFIntroduction: Antibiotics are ubiquitous pollutants and widely found in aquatic ecosystems, which of rhizosphere sediment and rhizosphere bacterial communities had certain correlation. However, the response of bacterial communities in rhizosphere and non-rhizosphere sediments to antibiotics stress is still poorly understood.
Methods: To address this knowledge gap, the samples of rhizosphere (R) and non-rhizosphere (NR) sediments of .
Cadmium (Cd) pollution has been widely recognized in lake ecosystems. Although the accurate prediction of the spatial distributions of Cd in lakes is important for controlling Cd pollution, the traditional monitoring methods of setting discrete and limited sampling points cannot actually reflect the continuous spatial distribution characteristics of Cd. In this study, we set up 93 sampling points in Baiyangdian Lake (BYDL), and collected surface water, overlying water and sediment samples from each sampling point.
View Article and Find Full Text PDFGroup B (GBS) is the main pathogen of perinatal infection. It can lead to adverse pregnancy, maternal infection, premature delivery, abortion, stillbirth and a series of adverse maternal and infant outcomes such as neonatal sepsis, meningitis or pneumonia during delivery. In order to reduce the infection of perinatal pregnant and the adverse pregnancy outcome, more attention should be paid in the clinical practice, screening efforts, universal detection of GBS infection for pregnant women and preventive treatment for the possible mother infant infection.
View Article and Find Full Text PDFNovel ratiometric fluorescent silica nanoparticles with high selectivity towards Hg(2+) were synthesized for the detection of Hg(2+). Hg(2+) promoted the ring opening of spirolactam in the rhodamine moiety grafted onto the silica nanoparticles, resulting in a change in the fluorescence intensity. The fluorescence intensity was proportional to the Hg(2+) concentration, and the detection limit (S/N=3) for Hg(2+) was found to be 2.
View Article and Find Full Text PDFA novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)-functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2009
The structures of multi-wall carbon nanotubes (MWNTs) were modified by H(2)SO(4)-HNO(3) and H(2)SO(4)-H(2)O(2), respectively. The corresponding products were water-soluble MWNTs-A and MWNTs-B. According to the experiment, it was found that MWNTs-B could emit stable solid substrate-room temperature phosphorescence (RTP) on the surface of paper with Ag(+) as perturber.
View Article and Find Full Text PDF