Publications by authors named "Haiyue Yin"

Elevated ozone (O ) can affect the susceptivity of plants to rust pathogens. However, the collective role of microbiomes involved in such interaction remains largely elusive. We exposed two cultivated poplar clones exhibiting differential O sensitivities, to non-filtered ambient air (NF), NF + 40 ppb or NF + 60 ppb O -enriched air in field open-top chambers and then inoculated Melampsora larici-populina urediniospores to study their response to rust infection and to investigate how microbiomes inhabiting four compartments (phyllosphere, rhizosphere, root endosphere, bulk soil) are involved in this response.

View Article and Find Full Text PDF

Five new tremulane sesquiterpenoids were isolated from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. All compounds showed obvious antifeedant activities against silkworm with inhibition percentages of 73-99%, at concentrations of 50 μg/cm. Compound 11 indicated notable antifeedant activity with inhibition percentage of 93% at concentration of 6.

View Article and Find Full Text PDF

Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity.

View Article and Find Full Text PDF

Eleven new polyketones named diaporthsins A-K (1-11) were isolated from the fermentation of sp. JC-J7. The chemical structures of compounds (1-11) were elucidated by spectroscopic methods including HRESIMS, 2DNMR, NMR and chemical methods.

View Article and Find Full Text PDF

sp. PH30583 cultured in liquid medium only led to one structure type of novel isochroman dimers. Using the one strain-many compounds strategy, the reinvestigation of the metabolites from sp.

View Article and Find Full Text PDF

Long segment tracheal stenosis often has a poor prognosis due to the limited availability of materials for tracheal reconstruction. Tissue engineered tracheal patches based on electrospun scaffolds and stem cells present ideal solutions to this medical challenge. However, the established engineering process is inefficient and time-consuming.

View Article and Find Full Text PDF

It is difficult for traditional sutures, which are usually braided by microfibers, to load drugs or growth factors. To develop a novel species of suture, in this study, a core-sheath yarn was fabricated by surrounding Poly (lactic-co-glycolic acid) (PLGA) microfibers with electrospun PLGA nanofibers using a custom electrospinning equipment with two needles and a rotating funnel. The resulting yarn shows enough mechanical strength to be used as sutures.

View Article and Find Full Text PDF

Tracheal stenosis is one of major challenging issues in clinical medicine because of the poor intrinsic ability of tracheal cartilage for repair. Tissue engineering provides an alternative method for the treatment of tracheal defects by generating replacement tracheal structures. In this study, we fabricated coaxial electrospun fibers using poly(L-lactic acid-co-caprolactone) and collagen solution as shell fluid and kartogenin solution as core fluid.

View Article and Find Full Text PDF