Driver assistance systems can help drivers achieve better control of their vehicles while driving and reduce driver fatigue and errors. However, the current driver assistance devices have a complex structure and severely violate the privacy of drivers, hindering the development of driver assistance technology. To address these limitations, this article proposes an intelligent driver assistance monitoring system (IDAMS), which combines a Kresling origami structure-based triboelectric sensor (KOS-TS) and a convolutional neural network (CNN)-based data analysis.
View Article and Find Full Text PDFIt remains unclear on how PM interacts with other air pollutants and meteorological factors at different temporal scales, while such knowledge is crucial to address the air pollution issue more effectively. In this study, we explored such interaction at various temporal scales, taking the city of Nanjing, China as a case study. The ensemble empirical mode decomposition (EEMD) method was applied to decompose time series data of PM, five other air pollutants, and six meteorological factors, as well as their correlations were examined at the daily and monthly scales.
View Article and Find Full Text PDF