Antimony selenide (SbSe) is a suitable candidate for a broadband photodetector owing to its remarkable optoelectronic properties. Achieving a high-performance self-powered photodetector through a desirable heterojunction still needs more efforts to explore. In this work, we demonstrate a broadband photodetector based on the hybrid heterostructure of SbSe nanorod arrays (NRAs) absorber and polymer acceptor (P(NDI2OD-T2), N2200).
View Article and Find Full Text PDFBinary Sb Se semiconductors are promising as the absorber materials in inorganic chalcogenide compound photovoltaics due to their attractive anisotropic optoelectronic properties. However, Sb Se solar cells suffer from complex and unconventional intrinsic defects due to the low symmetry of the quasi-1D crystal structure resulting in a considerable voltage deficit, which limits the ultimate power conversion efficiency (PCE). In this work, the creation of compact Sb Se films with strong [00l] orientation, high crystallinity, minimal deep level defect density, fewer trap states, and low non-radiative recombination loss by injection vapor deposition is reported.
View Article and Find Full Text PDFAnisotropic antimony selenide (SbSe) semiconductor has received considerable attention due to its unique one-dimensional crystal structure and corresponding superior and anisotropic optical and electronic properties. It is a promising material for a wide range of applications related to electronics and optoelectronics. Herein, we demonstrate a high-performance and self-powered SbSe nanorod array-based core/shell heterojunction detector fabricated on glass substate.
View Article and Find Full Text PDF