Proper flowering is essential for the reproduction of all kinds of plants. Oat is an important cereal and forage crop; however, its cultivation is limited because it is a long-day plant. The molecular mechanism by which oats respond to different photoperiods is still unclear.
View Article and Find Full Text PDFMaize is a major crop essential for food and feed, but its production is threatened by various biotic and abiotic stresses. Drought is one of the most common abiotic stresses, causing severe crop yield reduction. Although several studies have been devoted to selecting drought-tolerant maize lines and detecting the drought-responsive mechanism of maize, the transcriptomic differences between drought-tolerant and drought-susceptible maize lines are still largely unknown.
View Article and Find Full Text PDFChlorophyll molecules are non-covalently associated with chlorophyll-binding proteins to harvest light and perform charge separation vital for energy conservation during photosynthetic electron transfer in photosynthesis for photosynthetic organisms. The present study characterized a () maize mutant controlled by a single recessive gene causing chlorophyll reduction throughout the whole life cycle. Through positional mapping and complementation allelic test, () with two missense mutations (p.
View Article and Find Full Text PDFUnlabelled: Using imbalanced historical yield data to predict performance and select new lines is an arduous breeding task. Genome-wide association studies (GWAS) and high throughput genotyping based on sequencing techniques can increase prediction accuracy. An association mapping panel of 227 Texas elite (TXE) wheat breeding lines was used for GWAS and a training population to develop prediction models for grain yield selection.
View Article and Find Full Text PDFFlavonoids give plants their rich colors and play roles in a number of physiological processes. In this study, we identified a novel colorless maize mutant showing reduced pigmentation throughout the whole life cycle by EMS mutagenesis. E183K mutation in maize chalcone synthase C2 (ZmC2) was mapped using MutMap strategy as the causal for colorless, which was further validated by transformation in Arabidopsis.
View Article and Find Full Text PDFTranscriptome analysis of maize embryogenic callus and somatic embryos reveals associated genes reprogramming, hormone signaling pathways and transcriptional regulation involved in somatic embryogenesis in maize. Somatic embryos are widely utilized in propagation and genetic engineering of crop plants. In our laboratory, an elite maize inbred line Y423 that could generate intact somatic embryos was obtained and applied to genetic transformation.
View Article and Find Full Text PDFHusk has multiple functions such as protecting ears from diseases, infection, and dehydration during development. Additionally, husks comprised of fewer, shorter, thinner, and narrower layers allow faster moisture evaporation of kernels prior to harvest. Intensive studies have been conducted to identify appropriate husk architecture by understanding the genetic basis of related traits, including husk length, husk layer number, husk thickness, and husk width.
View Article and Find Full Text PDFThe husk is a leafy outer tissue that encloses a maize ear. Previously, we identified the optimum husk structure by measuring the husk length, husk layer number, husk thickness and husk width. Husk tightness (HTI) is a combined trait based on the above four husk measurements.
View Article and Find Full Text PDFThe husk-the leaf-like outer covering of maize ear-has multiple functions, including protecting the ear from diseases infection and dehydration. In previous studies, we genotyped an association panel of 508 inbred lines genotyped with a total of ~550,000 SNPs (Illumina 50 K SNP Chip and RNA-seq). Genome-Wide Association Studies (GWAS) were conducted on four husk traits: husk length (HL), husk layer number (HN), husk thickness (HT), and husk width (HW).
View Article and Find Full Text PDFFusarium Head Blight (FHB) has emerged in spring wheat production in Pacific Northwest during the last decade due to factors including climate changes, crop rotations, and tillage practices. A breeding population with 170 spring wheat lines was established and screened over a 2-year period in multiple locations for FHB incidence (INC), severity (SEV), and deposition of the mycotoxin, deoxynivalenol (DON). A genome-wide association study suggested that the detectable number of genetic loci and effects are limited for marker-assisted selection.
View Article and Find Full Text PDFPlant cell wall formation is a complex, coordinated and developmentally regulated process. Cellulose is the most dominant constituent of plant cell walls. Because of its paracrystalline structure, cellulose is the main determinant of mechanical strength of plant tissues.
View Article and Find Full Text PDFIntact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously.
View Article and Find Full Text PDF