The recycling of end-of-life wind turbine blades has become a global environmental challenge driven by the rapid growth of wind power. Pyrolysis is a promising method for recovering glass fibers from these discarded blades, but traditional pyrolysis is often operated at high temperatures, which degrades the mechanical properties of recovered fibers. To address this issue, a swelling-assisted pyrolysis method was proposed to recover high-quality glass fibers from end-of-life wind turbine blades at low temperatures.
View Article and Find Full Text PDFCarbon fiber-reinforced polymer composites (CFRPs) have gained widespread usage due to their promising physiochemical properties, while this causes large amounts of waste CFRPs worldwide. In this study, carbon fibers were successfully recovered from waste CFRPs through the pyrolysis-oxidation method, and the recovered fibers were reused in remanufacturing the secondary generation CFRPs. Moreover, the individual and interactive effects of pyrolysis-oxidation recovering parameters on the mechanical strength of the resulting remanufactured CFRPs (reCFRPs) were investigated.
View Article and Find Full Text PDF