J Transl Med
September 2024
Background: The roles of the transcriptional factor SIX2 have been identified in several tumors. However, its roles in gastric cancer (GC) progression have not yet been revealed. Our objective is to explore the impact and underlying mechanisms of SIX2 on the stemness of GC cells.
View Article and Find Full Text PDFEnviron Toxicol
February 2022
Tanshinone IIA is the active constituent extracted from Salvia Miltiorrhza. Numerous studies have shown that Tanshinone IIA could inhibit tumor proliferation and metastasis, including gastric cancer. However, the effect of Tanshinone IIA on gastric cancer cell stemness stays unclear.
View Article and Find Full Text PDFStem Cell Res Ther
June 2021
Background: Gastric cancer stem cells (CSCs) are the main causes of metastasis and drug resistance. We previously indicated that miR-375 can inhibit Helicobacter pylori-induced gastric carcinogenesis; here, we aim to explore the effects and mechanisms of miR-375 on gastric cancer (GC) cell stemness.
Methods: Lentivirus infection was used to construct GC cells with ectopic expression of miR-375.
Front Immunol
September 2021
MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells.
View Article and Find Full Text PDFOurs and other previous studies have shown that CYP4Z1 is specifically and highly expressed in breast cancer, and acts as a promoter for the stemness of breast cancer cells. Here, we explored whether targeting CYP4Z1 could attenuate the stemness of breast cancer cells using HET0016, which has been confirmed to be an inhibitor of CYP4Z1 by us and others. Using the transcriptome-sequencing analysis, we found that HET0016 suppressed the expression of cancer stem cell (CSC) markers and stem cell functions.
View Article and Find Full Text PDFThe relapse of breast cancer could be due to the existence of breast cancer stem cells (BCSCs). Other and our researches have indicated the suppressive roles of miR-375 in various tumors, however, its roles in breast cancer stemness remain confusing. Here, we constructed breast cancer cells with miR-375 stable overexpression via lentivirus infection.
View Article and Find Full Text PDFRNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors.
View Article and Find Full Text PDFThe original article [1] contained an error in Fig. 7c whereby the same flow image was accidentally misused for the second and fourth group.
View Article and Find Full Text PDFChemotherapy is a major anticancer therapeutic modality, however, multidrug resistance (MDR) is frequently observed and hinders treatment efficacy. Here, we investigated the role and potential mechanism of the long noncoding RNA (lncRNA) FENDRR in adriamycin resistance of chronic myeloid leukaemia (CML) cells. FENDRR overexpression attenuates adriamycin resistance, as shown by increased Rhodamine 123 accumulation, promotion of cell apoptosis in vitro and suppression of tumour growth in vivo.
View Article and Find Full Text PDFBackground: The expression of CYP4Z1 and the pseudogene CYP4Z2P has been shown to be specifically increased in breast cancer by our group and others. Additionally, we previously revealed the roles of the competitive endogenous RNA (ceRNA) network mediated by these genes (ceRNET_CC) in breast cancer angiogenesis, apoptosis, and tamoxifen resistance. However, the roles of ceRNET_CC in regulating the stemness of breast cancer cells and the mechanisms through which ceRNET_CC is regulated remain unclear.
View Article and Find Full Text PDFBackground: Breast cancer stem cells have self-renewal capability and are resistant to conventional chemotherapy. PD-L1 could promote the expression of stemness markers (OCT4 and Nanog) in breast cancer stem cells. However, the mechanisms by which PD-L1 regulates the stemness of breast cancer cells and PD-L1 is regulated in breast cancer cells are still unclear.
View Article and Find Full Text PDFBackground: Targeting cancer stem cells is critical for suppressing cancer progression and recurrence. Finding novel markers or related pathways could help eradicate or diagnose cancer in clinic.
Methods: By constructing STARD13-correlated ceRNA 3'UTR stable overexpression or knockdown breast cancer cells, we aimed to explore the effects of STARD13-correlated ceRNA network on breast cancer stemness in vitro and in vivo.
RNA binding proteins (RBPs) are pivotal post-transcriptional regulators. RNPC1, an RBP, acts as a tumor suppressor through binding and regulating the expression of target genes in cancer cells. This study disclosed that RNPC1 expression was positively correlated with breast cancer patients' relapse-free and overall survival and that RNPC1 suppressed breast cancer cell metastasis.
View Article and Find Full Text PDFCXCR4 is the most common chemokine receptor expressed on tumor cells, and it is closely correlated with cancer cell stemness. This study was carried out to explore whether CXCR4 could function as a competitive endogenous RNA to promote metastasis, proliferation and survival in MCF-7 breast cancer cells. We validated that CXCR4, together with TRAF6 and EGFR, was directly targeted by miR-146a in MCF-7 cells.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2015
The crystal structure of a new coordination compound tri(2-(2,6-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) Co(II) complex ([Co(dcpip)3]Cl2) was measured with X-ray diffraction measurements. The compound is crystallizes triclinic, Pī space group. The ligand, 2-(2,6-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline(dcpip), binds to Co(II) ions with a bis-dentate mode, and each Co(II) ion with a distorted octahedral coordination geometry.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2015
3-(2,6-Dichlorobenzyl)-5-methyl-N-nitro-1,3,5-oxadiazinan-4-imine (DNOI) was synthesized and characterized by X-ray diffraction, FT-IR, FT-Raman and UV-Vis spectra. The X-ray diffraction study showed that DNOI has a one dimensional configuration, due to the intermolecular C9H⋯O1 and N4H⋯O2 hydrogen bonds. The benzene ring and the oxadiazine rings are tilted with respect to each other by 63.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2015
The compound 9-p-tolyl-9H-carbazole-3-carbaldehyde (HCCD) was synthesized and characterized by X-ray diffraction, FT-IR, FT-Raman and UV-Vis spectra. The X-ray diffraction study showed that HCCD has a Z-configuration. The benzene ring including methyl is twisted from the mean plane of the carbazole group by 59.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2014
Vibrational and electronic spectral measurements were performed for 3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene(nitro) amine (thiamethoxam). Optimized geometrical structure and harmonic vibrational frequencies were calculated with ab initio RHF and DFT (B3LYP, CAMB3LYP, M06 and PBE1PBE) methods with 6-311++G (d, p) basis set. Complete assignments of the observed spectra were proposed.
View Article and Find Full Text PDF