Biochim Biophys Acta Gene Regul Mech
December 2024
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown.
View Article and Find Full Text PDFIn specific cases, chromatin clearly forms long-range loops that place distant regulatory elements in close proximity to transcription start sites, but we have limited understanding of many loops identified by Chromosome Conformation Capture (such as Hi-C) analyses. In efforts to elucidate their characteristics and functions, we have identified highly interacting regions (HIRs) using intra-chromosomal Hi-C datasets with a new computational method based on looking at the eigenvector that corresponds to the smallest eigenvalue (here unity). Analysis of these regions using ENCODE data shows that they are in general enriched in bound factors involved in DNA damage repair and have actively transcribed genes.
View Article and Find Full Text PDFVirophages are small dsDNA viruses that were first isolated in association with some giant viruses (GVs), and then found in metagenomics samples. They encode about 20⁻34 proteins. Some virophages share protein similarity with Maverick/Polinton transposons or are considered as a provirophage, whereas about half of the protein's repertoire remain of unknown function.
View Article and Find Full Text PDFHi-C experiments generate data in form of large genome contact maps (Hi-C maps). These show that chromosomes are arranged in a hierarchy of three-dimensional compartments. But to understand how these compartments form and by how much they affect genetic processes such as gene regulation, biologists and bioinformaticians need efficient tools to visualize and analyze Hi-C data.
View Article and Find Full Text PDFViruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered.
View Article and Find Full Text PDFProteins harbor domains or short linear motifs, which facilitate their functions and interactions. Finding functional motifs in protein sequences could predict the putative cellular roles or characteristics of hypothetical proteins. In this study, we present Shetti-Motif, which is an interactive tool to (i) map UniProt and PROSITE flat files, (ii) search for multiple pre-defined consensus patterns or experimentally validated functional motifs in large datasets protein sequences (proteome-wide), (iii) search for motifs containing repeated residues (low-complexity regions, e.
View Article and Find Full Text PDFA comment on “Social influence and peer review”. [Image: see text]
View Article and Find Full Text PDFShort linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein.
View Article and Find Full Text PDFMicrob Genom
November 2015
[This corrects the article DOI: 10.1099/mgen.0.
View Article and Find Full Text PDFMicrob Genom
November 2015
Parsing and manipulating long and/or multiple protein or gene sequences can be a challenging process for experimental biologists and microbiologists lacking prior knowledge of bioinformatics and programming. Here we present a simple, easy, user-friendly and versatile tool to parse, manipulate and search within large datasets of long and multiple protein or gene sequences. The Shetti tool can be used to search for a sequence, species, protein/gene or pattern/motif.
View Article and Find Full Text PDFGenomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function.
View Article and Find Full Text PDFDesigning primers and probes for polymerase chain reaction (PCR) is a preliminary and critical step that requires the identification of highly conserved regions in a given set of sequences. This task can be challenging if the targeted sequences display a high level of diversity, as frequently encountered in microbiologic studies. We developed Gemi, an automated, fast, and easy-to-use bioinformatics tool with a user-friendly interface to design primers and probes based on multiple aligned sequences.
View Article and Find Full Text PDF