Publications by authors named "Haitham Elnakar"

The urgent need to eliminate Perfluorooctanoic Acid (PFOA) has positioned electrooxidation (EO) as a key solution for pollutant degradation. This study evaluates several machine learning (ML) models, including K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Deep Learning (DL), to predict EO efficiency in PFOA removal. Using 10-fold cross-validation, the RF model outperformed others with a root mean square error (RMSE) of 7.

View Article and Find Full Text PDF

This study explores the optimization of iron electrocoagulation for treating laundry greywater, which accounts for up to 38% of domestic greywater. Characterized by high concentrations of surfactants, detergents, and suspended solids, laundry greywater presents complex challenges for treatment processes, posing significant environmental and health risks. Utilizing response surface methodology (RSM), this research developed a second-order polynomial regression model focused on key operational parameters such as the area-to-volume ratio (A/V), current density, electrolysis time, and settling time.

View Article and Find Full Text PDF

The occurrence of sand and dust storms (SDSs) is essential for the geochemical cycling of nutrients; however, it is considered a meteorological hazard common to arid regions because of the adverse impacts that SDSs brings with them. One common implication of SDSs is the transport and disposition of aerosols coated with anthropogenic contaminants. Studies have reported the presence of such contaminants in desert dust; however, similar findings related to ubiquitous emerging contaminants, such as per- and poly-fluoroalkyl substances (PFAS), have been relatively scarce in the literature.

View Article and Find Full Text PDF

This is a review of some of the literature published in 2019 related to disinfection and antimicrobial processes. This review includes the following main sections: drinking water disinfection, wastewater disinfection, and antimicrobial resistance. PRACTITIONER POINTS: Emerging technologies to disinfect viruses in drinking water treatment plants are growing.

View Article and Find Full Text PDF

In-plant wastewater treatment strategies to handle bypass wastewater exceeding design capacity are insufficiently investigated in the scientific literature notwithstanding their importance in ensuring sustainable wastewater management. In this study, the effectiveness of iron electrocoagulation was investigated, for the first time, to enhance primary treatment capability in removing soluble chemical oxygen demand (sCOD) from bypass wastewater. In addition, the appropriate assumptions and experimental protocols for the application of adsorption isotherm models, widely used to describe the electrocoagulation process, were discussed in light of experimental results.

View Article and Find Full Text PDF

This is a review of the literature published in 2018 related to the prevention of water pollution by or recovery of beneficial materials from wastewater produced in the pulp and paper industry. This review includes the following main sections: cleaner production, biological treatment, and physico-chemical treatment. PRACTITIONER POINTS: Converting pulp and paper treatment sludges to value-added materials can be efficient cleaner production technique.

View Article and Find Full Text PDF

In-plant wastewater treatment strategies to deal with bypass wastewater in excess of plant capacity are critical in securing sustainable wastewater management. To address this issue, potassium ferrate(VI), which is a dual disinfectant and coagulant, is assessed in this study as the sole chemical applied to enhance the primary treatment of bypass wastewater. The effect of rapid mixing speed is investigated for the first time along with potassium ferrate(VI) dosage by means of central composite design and response surface methodology.

View Article and Find Full Text PDF

Bypass wastewaters need an appropriate auxiliary treatment to address their broad range of chemical and bacterial characteristics. The dual capacity of potassium ferrate(VI) as disinfectant/oxidant and coagulant may be useful in a sustainable process retrofit to provide adequate treatment to such wastewaters. However, the engineering aspects of potassium ferrate(VI) based technology to retrofit within existing coagulation-flocculation-sedimentation basins have not been studied.

View Article and Find Full Text PDF

This is a review of literature published in 2017 related to the prevention of water pollution by or recovery of beneficial materials from wastewater produced in the pulp and paper industry. This review includes the following main sections: cleaner production, biological treatment, and physico-chemical treatment.

View Article and Find Full Text PDF

This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.

View Article and Find Full Text PDF

Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions.

View Article and Find Full Text PDF