Atherosclerosis and vessel wall trauma induce vascular smooth muscle cell (VSMC) phenotypic modulation, leading to plaque cap growth and postintervention restenosis. Our systems biology approach identified RNA binding protein, mRNA processing factor () as a conserved, VSMC-specific gene associated with VSMC modulation in atherosclerosis. gene expression positively correlates with VSMC contractile markers in human and murine atherosclerotic arteries as well as in two vascular injury models during the postinjury intimal hyperplasia phase.
View Article and Find Full Text PDFIn the treatment of breast cancer, the dense extracellular matrix (ECM) severely impedes drug delivery and immune cell infiltration, resulting in poor therapeutic effects. Photothermal therapy (PTT) has achieved promise in preclinical breast cancer studies. However, in tumor immunogenic cell death (ICD) induced by PTT, immune cells are almost confined around the tumor periphery due to the ECM, which weakens the immune response.
View Article and Find Full Text PDFPurpose: This study evaluates the effectiveness of lacrimal gland ultrasonography (LGUS) and shear wave elastography (SWE) in distinguishing primary Sjögren's syndrome (PSS) patients from healthy controls and examines their role in assessing disease activity and prognosis.
Methods: A total of 35 PSS patients and 23 age- and gender-matched healthy controls were included. LGUS was used to grade lacrimal gland structure, while SWE assessed gland elasticity.
Background: The progression of triple-negative breast cancer is shaped by both tumor cells and the surrounding tumor microenvironment (TME). Within the TME, tumor-associated macrophages (TAMs) represent a significant cell population and have emerged as a primary target for cancer therapy. As antigen-presenting cells within the innate immune system, macrophages are pivotal in tumor immunotherapy through their phagocytic functions.
View Article and Find Full Text PDFSonogenetics is an advanced ultrasound-based neurostimulation approach for targeting neurons in specific brain regions. However, the role of sonogenetics in treating status epilepticus (SE) remains unclear. Here, we aimed to investigate the effects of ultrasound neurostimulation and MscL-G22S (a mechanosensitive ion channel that mediates Ca influx)-mediated sonogenetics (MG-SOG) in a mouse model of kainic acid (KA)-induced SE.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Amplifying oxidative stress to disrupt intracellular redox homeostasis can accelerate tumor cell death. In this work, an oxidative stress amplifier (PP@T) is prepared for enhanced tumor oxidation therapy to reduce tumor growth and metastases. The nano-amplifier has been successfully constructed by embedding MTH1 inhibitor (TH588) in the PDA-coated porphyrin metal-organic framework PCN-224.
View Article and Find Full Text PDFAn immunosuppressive tumour microenvironment strongly influences response rates in patients receiving immune checkpoint blockade-based cancer immunotherapies, such as programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1). Here we demonstrate that metal-ion-chelating L-phenylalanine nanostructures synergize with short-term starvation (STS) to remodel the immunosuppressive microenvironment of breast and colorectal tumours. These nanostructures modulate the electrophysiological behaviour of dendritic cells and activate them through the NLRP3 inflammasome and calcium-mediated nuclear factor-κB pathway.
View Article and Find Full Text PDFPurpose: To address the problem of suboptimal reactive oxygen species (ROS) production in Radiation therapy (RT) which was resulted from exacerbated tumor hypoxia and the heterogeneous distribution of radiation sensitizers.
Materials And Methods: In this work, a novel nanomedicine, designated as PLGA@IR780-Bi-DTPA (PIBD), was engineered by loading the radiation sensitizer Bi-DTPA and the photothermal agent IR780 onto poly(lactic-co-glycolic acid) (PLGA). This design leverages the tumor-targeting ability of IR780 to ensure selective accumulation of the nanoparticles in tumor cells, particularly within the mitochondria.
Photothermal therapy (PTT) is a promising cancer treatment method due to its ability to induce tumor-specific T cell responses and enhance therapeutic outcomes. However, incomplete PTT can leave residual tumors that often lead to new metastases and decreased patient survival in clinical scenarios. This is primarily due to the release of ATP, a damage-associated molecular pattern that quickly transforms into the immunosuppressive metabolite adenosine by CD39, prevalent in the tumor microenvironment, thus promoting tumor immune evasion.
View Article and Find Full Text PDFChemodynamic therapy (CDT) is recognized as a promising cancer treatment. Recently, copper sulfide nanostructures have been extensively employed as Fenton-like reagents that catalyze the formation of acutely toxic hydroxyl radicals (·OH) from hydrogen peroxide (HO). However, CDT therapeutic potency is restricted by the tumor microenvironment (TME), such as insufficient amounts of hydrogen peroxide, excessive glutathione levels, etc.
View Article and Find Full Text PDFMetastasis and recurrence are notable contributors to mortality associated with breast cancer. Although immunotherapy has shown promise in mitigating these risks after conventional treatments, its effectiveness remains constrained by significant challenges, such as impaired antigen presentation by dendritic cells (DCs) and inadequate T cell infiltration into tumor tissues. To address these limitations, we developed a multifunctional nanoparticle platform, termed GM@P, which consisted of a hydrophobic shell encapsulating the photosensitizer MHI148 and a hydrophilic core containing the STING agonist 2'3'-cGAMP.
View Article and Find Full Text PDFThe field of immunotherapy, particularly immune checkpoint blockade (ICB), holds immense potential in mitigating the progression of cancer. However, the challenges of insufficient tumor antigen production and the immunosuppressive state in the tumor microenvironment substantially impede patients from deriving benefits. In this research, we present a tumor-microenvironment-modulation manganese-based nanosystem, PEG-MnMOF@PTX, aiming to improve the responsiveness of ICB.
View Article and Find Full Text PDFMetallic biomaterials activate tumor ferroptosis by increasing oxidative stress, but their efficacy is severely limited in tumor microenvironment. Although interferon gamma (IFN-γ) can promote tumor ferroptosis sensitivity by inhibiting the antioxidant system and promoting lipid accumulation, this effect limited by the lack of IFN-γ accumulation in tumors. Herein, we report a near-infrared (NIR)-responsive HCuS nanocomposite (HCuS-PE@TSL-tlyp-1) that can stimulate immunogenic cell death (ICD)-mediated IFN-γ secretion through exogenous oxidative stress, thereby achieving cascaded ferrotherapy by mutually reinforcing ferroptosis and systemic immunity.
View Article and Find Full Text PDFCytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response.
View Article and Find Full Text PDFBackground: The prognosis for hepatocellular carcinoma (HCC) remains suboptimal, characterized by high recurrence and metastasis rates. Although metalloimmunotherapy has shown potential in combating tumor proliferation, recurrence and metastasis, current apoptosis-based metalloimmunotherapy fails to elicit sufficient immune response for HCC.
Results: A smart responsive bimetallic nanovaccine was constructed to induce immunogenic cell death (ICD) through pyroptosis and enhance the efficacy of the cGAS-STING pathway.
Currently, inadequate early diagnostic methods hinder the prompt treatment of patients with heart failure and myocardial fibrosis. Magnetic resonance imaging is the gold standard noninvasive diagnostic method; however, its effectiveness is constrained by low resolution and challenges posed by certain patients who cannot undergo the procedure. Although enhanced computed tomography (CT) offers high resolution, challenges arise owing to the unclear differentiation between fibrotic and normal myocardial tissue.
View Article and Find Full Text PDFStroke incidence is the most severe complication associated with atrial fibrillation (AF), and the most common site of thrombus formation in AF patients is the left atrial appendage (LAA). This study was developed to use two-dimensional speckle tracking imaging (2D-STI) to explore associations between LAA strain/strain rate and stroke incidence and to evaluate the value of utilizing LAA strain and strain rate values to support the stratification of nonvalvular AF (NVAF) patients based on stroke risk. A total of 486 AF patients who had undergone transesophageal echocardiography to exclude potential intracardiac thrombosis between March 2021 and November 2022 were consecutively enrolled.
View Article and Find Full Text PDFJ Clin Ultrasound
January 2024
Due to lymphocytic infiltration of the salivary and lacrimal glands, Sjogren's syndrome (SS), a systemic autoimmune illness that mostly affects the exocrine glands, causes dry mouth (xerostomia) and dry eyes (xerophthalmia). Additionally, SS is associated with various comorbidities such as cardiovascular diseases, infections, musculoskeletal diseases, and cancers. Among patients with SS, xerophthalmia frequently arises as a complication, leading to insufficient tear production or rapid tear evaporation, thereby causing discomfort, irritation, and a gritty sensation in the eyes.
View Article and Find Full Text PDFExpression of Concern for 'Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery' by Jianxin Liu , , 2018, , 2838-2849, https://doi.org/10.1039/C8BM00726H.
View Article and Find Full Text PDFGraphdiyne has excellent potential due to its enzymatic properties. Metal-free sulfur-doped Graphdiyne (S-GDY) has piezoelectric characteristics, and ultrasonic excitation of S-GDY enhances peroxidase activity. It can turn hydrogen peroxide into toxic hydroxyl radicals and induce apoptosis in 4T1 cells.
View Article and Find Full Text PDF