Publications by authors named "Haitao Ji"

This protocol discloses the synthesis of monocarboxylic inhibitors with a macrocyclic peptide scaffold to bind with the GRB2 SH2 domain and disrupt the protein-protein interactions (PPIs) between GRB2 and phosphotyrosine-containing proteins.

View Article and Find Full Text PDF

Background Breast cancer is the most common malignant tumour in women. Radical mastectomy with postoperative radiotherapy is now the standard treatment for locally advanced breast cancer. Intensity-modulated radiotherapy (IMRT) has now been developed, which employs linear accelerators to deliver precise radiation to a tumour while minimizing the dose to surrounding normal tissue.

View Article and Find Full Text PDF

The binding conformations of α-helical hydrophobic hot spots are convergent into two spatial areas in protein-protein complex structures. The physical basis for convergence was disclosed, which allows the development of pharmacophore models for / + 4/ + 7 or / + 3/ + 4 α-helical hot spots. Further investigation revealed that this convergence of binding conformations is common among all hydrophobic hot spots regardless of their α-helical positions.

View Article and Find Full Text PDF

Fragment-based ligand discovery (FBLD) is one of the most successful approaches to designing small-molecule protein-protein interaction (PPI) inhibitors. The incorporation of computational tools to FBLD allows the exploration of chemical space in a time- and cost-efficient manner. Herein, a computational protocol for the development of small-molecule PPI inhibitors using fragment hopping, a fragment-based de novo design approach, is described and a case study is presented to illustrate the efficiency of this protocol.

View Article and Find Full Text PDF

A series of 1-(3-(2-amino-2-oxoethoxy)phenyl)piperidine-3-carboxamide derivatives was reported as new small-molecule β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) inhibitors. Compounds - were discovered to inhibit the β-catenin/BCL9 PPI with = 0.85-2.

View Article and Find Full Text PDF

The cooperativity index, , was developed to examine the binding synergy between hot spots of the ligand-protein. For the first time, the convergence of the side-chain spatial arrangements of hydrophilic α-helical hot spots Thr, Tyr, Asp, Asn, Ser, Cys, and His in protein-protein interaction (PPI) complex structures was disclosed and quantified by developing novel clustering models. In-depth analyses revealed the driving force for the protein-protein binding conformation convergence of hydrophilic α-helical hot spots.

View Article and Find Full Text PDF

A monocarboxylic inhibitor was designed and synthesized to disrupt the protein-protein interaction (PPI) between GRB2 and phosphotyrosine-containing proteins. Biochemical characterizations show compound 7 binds with the Src homology 2 (SH2) domain of GRB2 and is more potent than EGFR phosphopeptide 14-mer. X-ray crystallographic studies demonstrate compound 7 occupies the GRB2 binding site for phosphotyrosine-containing sequences and reveal key structural features for GRB2-inhibitor binding.

View Article and Find Full Text PDF

Aberrant activation of Wnt/β-catenin signaling is strongly associated with many diseases including cancer invasion and metastasis. Small-molecule targeting of the central signaling node of this pathway, β-catenin, is a biologically rational approach to abolish hyperactivation of β-catenin signaling but has been demonstrated to be a difficult task. Herein, we report a drug-like small molecule, , that binds with β-catenin and selectively disrupts the protein-protein interaction (PPI) between B-cell lymphoma 9 (BCL9) and β-catenin while sparing the β-catenin/E-cadherin PPI.

View Article and Find Full Text PDF

Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs.

View Article and Find Full Text PDF

The β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/β-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we describe the medicinal chemistry optimization of a screening hit to yield novel small-molecule inhibitors of the β-catenin/BCL9 interaction. The best compound can disrupt the β-catenin/BCL9 interaction with a of 3.

View Article and Find Full Text PDF

Purpose: There is significant interest in the development of targeted alpha-particle therapies (TATs) for treatment of solid tumors. The metal chelator-peptide conjugate, DOTA-TATE, loaded with the β-particle emitting radionuclide Lu ([Lu]Lu-DOTA-TATE) is now standard care for neuroendocrine tumors that express the somatostatin receptor 2 (SSTR2) target. A recent clinical study demonstrated efficacy of the corresponding [Ac]Ac-DOTA-TATE in patients that were refractory to [Lu]Lu-DOTA-TATE.

View Article and Find Full Text PDF

Aberrant activation of the Wnt/β-catenin signaling circuit is associated with cancer recurrence and relapse, cancer invasion and metastasis, and cancer immune evasion. Direct targeting of β-catenin, the central hub in this signaling pathway, is a promising strategy to suppress the hyperactive β-catenin signaling but has proven to be highly challenging. Substantial efforts have been made to discover compounds that bind with β-catenin, block β-catenin-mediated protein-protein interactions, and suppress β-catenin signaling.

View Article and Find Full Text PDF

Transcription factors are attractive therapeutic targets that are considered non-druggable because they do not have binding sites for small drug-like ligands. We established a cell-free high-throughput screening assay to search for small molecule inhibitors of DNA binding by transcription factors. A screen was performed using p53 as a target, resulting in the identification of NSC194598 that inhibits p53 sequence-specific DNA binding in vitro (IC = 180 nM) and in vivo.

View Article and Find Full Text PDF

The conformational convergence of hydrophobic α-helical hot spots was revealed by analyzing α-helix-mediated protein-protein interaction (PPI) complex structures. The pharmacophore models were derived for hydrophobic α-helical hot spots at positions , + 3, and + 7. These provide the foundation for designing generalizable scaffolds that can directly mimic the binding mode of the side chains of α-helical hot spots, offering a new class of small-molecule α-helix mimetics.

View Article and Find Full Text PDF

The rational design of α-helix-mimicking peptidomimetics provides a streamlined approach to discover potent inhibitors for protein-protein interactions (PPIs). However, designing cell-penetrating long peptidomimetic scaffolds equipped with various functional groups necessary for interacting with large protein-binding interfaces remains challenging. This is particularly true for targeting β-catenin/BCL9 PPIs.

View Article and Find Full Text PDF

The β-catenin/T-cell factor (Tcf) protein-protein interaction (PPI) plays a critical role in the β-catenin signaling pathway which is hyperactivated in many cancers and fibroses. Based on compound 1, which was designed to target the Tcf4 GANDE binding site of β-catenin, extensive structure-activity relationship studies have been conducted. As a result, compounds 53 and 57 were found to disrupt the β-catenin/Tcf PPI with the K values of 0.

View Article and Find Full Text PDF

A robust Ru(II)-catalyzed C-H allylation of electron-deficient alkenes with allyl alcohols in aqueous solution is reported. This method provides a straightforward and efficient access to the synthetically useful 1,4-diene skeletons. With the assistance of the N-methoxycarbamoyl directing group, this allylation reaction features a broad substrate scope with good functional group tolerance, excellent regio- and stereoselectivity, absence of metal oxidants, water-tolerant solvents, and mild reaction conditions.

View Article and Find Full Text PDF

An efficient Rh(iii)-catalyzed dehydrative C-H allylation of indoles with allyl alcohols via β-hydroxide elimination under oxidant-free conditions has been developed. This method features very mild reaction conditions, excellent regioselectivity and stereoselectivity, and compatibility with various functional groups. In addition, the directing group can be removed under mild reaction conditions, which further underscores the synthetic utility of this method.

View Article and Find Full Text PDF

Aldo-keto reductase 1B10 (AKR1B10) is upregulated in breast cancer and promotes tumor growth and metastasis. However, little is known of the molecular mechanisms of action. Herein we report that AKR1B10 activates lipid second messengers to stimulate cell proliferation.

View Article and Find Full Text PDF

The development of an efficient approach to construct fused polycyclic systems bearing a quaternary carbon center represents a great challenge to synthetic chemistry. Herein, we report a Rh(III)-catalyzed [4 + 1] annulation of propargyl alcohols with various heterocyclic scaffolds under an air atmosphere. Diverse fused heterocycles containing a quaternary carbon center were obtained in moderate to good yields.

View Article and Find Full Text PDF

A ruthenium-catalyzed C-H allylation of indoles with allyl alcohols via β-hydroxide elimination is reported. Without external oxidants and expensive additives, this reaction features mild reaction conditions, compatibility with various functional groups, and good to excellent regioselectivity and stereoselectivity.

View Article and Find Full Text PDF

Structure-based optimization was conducted to improve the potency, selectivity, and cell-based activities of β-catenin/B-cell lymphoma 9 (BCL9) inhibitors based on the 4'-fluoro- N-phenyl-[1,1'-biphenyl]-3-carboxamide scaffold, which was designed to mimic the side chains of the hydrophobic α-helical hot spots at positions i, i + 3, and i + 7. Compound 29 was found to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a K of 0.47 μM and >1900-fold selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs.

View Article and Find Full Text PDF

The determination of the cellular bioavailability of small-molecule inhibitors is a critical step for interpreting cell-based data and guiding inhibitor optimization. Herein, a HPLC-MS based protocol was developed to determine inhibitor cellular bioavailability. This generalizable protocol allows determination of the accurate intracellular concentrations and characterization of various properties of inhibitors including the extra- and intracellular stability, the dose- and time-dependence of the intracellular concentrations, the cell permeability, and the nonspecific binding with the cell culture plates, the extracellular matrices, and the cell membrane.

View Article and Find Full Text PDF

A small-molecule inhibitor with a 1,4-dibenzoylpiperazine scaffold was designed to match the critical binding elements in the β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction interface. Inhibitor optimization led to a potent inhibitor that can disrupt the β-catenin/BCL9 interaction and exhibit 98-fold selectivity over the β-catenin/cadherin interaction. The binding mode of new inhibitors was characterized by structure-activity relationships and site-directed mutagenesis studies.

View Article and Find Full Text PDF