An in situ monitoring reaction can better obtain the variations during the progression of the photocatalytic reaction. However, the complexity of the apparatus and the limited applicability of substances are the common challenges faced by most in situ monitoring methods. Here, we invented an in situ infrared optical fiber sensor to monitor the reactants and products during photocatalytic reaction.
View Article and Find Full Text PDFBackground & Aims: Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.
Methods: HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS.
Infrared soft glass hollow-core anti-resonant fibers (HC-ARF) with low loss, excellent mode purity, and robust high-power transmission capabilities have vast potential in mid-infrared high-power laser transmission and biomedical fields. Despite this, the fabrication of these fibers still faces formidable challenges, coupled with an incomplete understanding of the transmission characteristics, thereby amplifying the value of further exploration. In this paper, we fabricate a six-cell nodeless infrared HC-ARF originating from purified sulfide glass, synthesized using a meticulous "stack-and-draw" method and dual-gas-path pressure control method.
View Article and Find Full Text PDFChronic hepatitis B virus (HBV) infection remains a significant public health burden with no cure currently available. The research to cure HBV has long been hampered by the lack of immunocompetent small animal models capable of supporting HBV infection. Here, we set out to explore the feasibility of the golden Syrian hamster as an immunocompetent small rodent model for HBV infection.
View Article and Find Full Text PDFUnlabelled: Human Na+-taurocholate cotransporting polypeptide (hNTCP) is predominantly expressed in hepatocytes, maintaining bile salt homeostasis and serving as a receptor for hepatitis B virus (HBV). hNTCP expression is downregulated during hepatocellular carcinoma (HCC) development. In this study, we investigated the molecular mechanisms underlying hNTCP dysregulation using HCC tissues and cell lines, and primary human hepatocytes (PHHs).
View Article and Find Full Text PDFNeuropharmacology
December 2024
Methods Mol Biol
July 2024
Hepatitis B virus (HBV) is an obligate human hepatotropic DNA virus causing both transient and chronic infection. The livers of chronic hepatitis B patients have a high risk of developing liver fibrosis, cirrhosis, and hepatocellular carcinoma. The nuclear episomal viral DNA intermediate, covalently closed circular DNA (cccDNA), forms a highly stable complex with host and viral proteins to serve as a transcription template and support HBV infection chronicity.
View Article and Find Full Text PDFTripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells.
View Article and Find Full Text PDFThe hollow core anti-resonant fibers (HC-ARFs) based on soft glass are in high demand for 3-6 µm laser delivery. A HC-ARF based on tellurite glass with 6 touching capillaries as cladding was designed and fabricated for the first time, to the best of our knowledge. A relatively low loss of 3.
View Article and Find Full Text PDFSince its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity.
View Article and Find Full Text PDFWe have previously developed a bacterial artificial chromosome (BAC)-vectored SARS-CoV-2 replicon, namely BAC-CoV2-Rep, which, upon transfection into host cells, serves as a transcription template for SARS-CoV-2 replicon mRNA to initiate replicon replication and produce nanoluciferase (Nluc) reporter from the subgenomic viral mRNA. However, an inherent issue of such DNA-launched replicon system is that the nascent full-length replicon transcript undergoes process by host RNA splicing machinery, which reduces replicon replication and generates spliced mRNA species expressing NLuc reporter independent of replicon replication. To mitigate this problem, we employed Isoginkgetin, a universal eukaryotic host splicing inhibitor, to treat cells transfected with BAC-CoV2-Rep.
View Article and Find Full Text PDFObjective: Given the intricate challenges and potential complications associated with periacetabular osteotomy (PAO) for developmental dysplasia of the hip (DDH). Our study aimed to compare the clinical and imaging benefits and drawbacks of two surgical approaches, the modified Stoppa combined iliac spine approach and the modified Smith-Peterson approach, for treating PAO and to provide guidance for selecting clinical approaches.
Methods: A retrospective analysis of 56 patients with 62 DDHs was conducted from June 2018 to January 2022.
Emerging evidence supports a high prevalence of cancer type-specific microbiota residing within tumor tissues. The intratumoral microbiome in hepatocellular carcinoma (HCC), especially in viral (hepatitis B virus [HBV]/hepatitis C virus [HCV]) HCC, has not been well characterized for their existence, composition, distribution, and biological functions. We report herein a finding of specific microbial signature in viral HCC as compared to non-HBV/non-HCV (NBNC) HCC.
View Article and Find Full Text PDFIn this work, the concentration of rare-earth ions in doped silica whispering gallery lasers (WGLs) is controlled by evaporation. The fabrication of WGLs is used to experimentally evaluate the evaporation rate (mol/μm) and ratio (mol/mol) of erbium and silica lost from a doped fiber during heating. Fixed lengths of doped silica fiber are spliced to different lengths of undoped fiber and then evaporated by feeding into the focus of a CO laser.
View Article and Find Full Text PDFConstructing three-dimensional (3D) bioprinted skin tissues that accurately replicate the mechanical properties of native skin and provide adequate oxygen and nutrient support remains a formidable challenge. In this study, we incorporated phosphosilicate calcium bioglasses (PSCs), a type of bioactive glass (BG), into the bioinks used for 3D bioprinting. The resulting bioink exhibited mechanical properties and biocompatibility that closely resembled those of natural skin.
View Article and Find Full Text PDFBackground: In the tolerogenic liver, inadequate or ineffective interferon signaling fails to clear chronic HBV infection. Lambda IFNs (IFNL) bind the interferon lambda receptor-1 (IFNLR1) which dimerizes with IL10RB to induce transcription of antiviral interferon-stimulated genes (ISG). IFNLR1 is expressed on hepatocytes, but low expression may limit the strength and antiviral efficacy of IFNL signaling.
View Article and Find Full Text PDFClinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences.
View Article and Find Full Text PDFHere, by introducing polystyrenesulfonate (PSS) as a multifunctional bridging molecule to synchronously coordinate the interaction between the precursor and the structure-directing agent, we developed a mesoporous conductive polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) featuring adjustable size in the range of 105-1836 nm, open nanochannels, large specific surface area (105.5 m g), and high electrical conductivity (172.9 S cm).
View Article and Find Full Text PDFWe investigate the power scaling and thermal management of multi-point side-pumped 2.825 µm heavily-erbium-doped fluoride fiber lasers by numerical simulation. The 4-point (or 6-point) erbium-doped fluoride fiber laser with polished erbium-doped fluoride fiber-based side-pump couplers delivers an output laser power of over 100 W at each launched 981 nm pump power of 100 W (or 75 W).
View Article and Find Full Text PDFThe presence of hepatitis B virus (HBV) covalently closed circular (ccc) DNA (cccDNA), which serves as a template for viral replication and integration of HBV DNA into the host cell genome, sustains liver pathogenesis and constitutes an intractable barrier to the eradication of chronic HBV infection. The current antiviral therapy for HBV infection, using nucleos(t)ide analogues (NAs), can suppress HBV replication but cannot eliminate integrated HBV DNA and episomal cccDNA. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 is a powerful genetic tool that can edit integrated HBV DNA and minichromosomal cccDNA for gene therapy, but its expression and delivery require a viral vector, which poses safety concerns for therapeutic applications in humans.
View Article and Find Full Text PDFAim: Under hypobaric hypoxia (HH), the heart triggers various defense mechanisms including metabolic remodeling against lack of oxygen. Mitofusin 2 (MFN2), located at the mitochondrial outer membrane, is closely involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the role of MFN2 in cardiac response to HH has not been explored.
View Article and Find Full Text PDF