Publications by authors named "Haitao Cui"

Article Synopsis
  • - Organoids are innovative models that replicate human organ structures and functions, making them valuable for studying diseases, and their research has increased recently.
  • - The review highlights advancements in 3D bioprinting, a technology that can create complex cellular environments to enhance organoid development, including benefits like higher cell concentrations and precise structure formation.
  • - It also summarizes commonly used bioprinting methods and materials for organoids while discussing recent studies, current challenges, and future opportunities in this field.
View Article and Find Full Text PDF
Article Synopsis
  • MAPKs are key players in plant stress responses, specifically in how plants deal with salt stress.
  • The study reveals that rice calcium-dependent protein kinases OsCPK5 and OsCPK13 can activate MAPKs OsMPK3 and OsMPK6 directly without going through MAP Kinase Kinases (MKKs).
  • These kinases not only enhance rice's salt tolerance but also move from the cell membrane to the nucleus in response to salt, due to specific modifications to their structure.
View Article and Find Full Text PDF

Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focused on identifying stable reference genes in Lutjanus erythropterus across various tissues, developmental stages, and astaxanthin treatments, examining twelve candidate genes using geNorm and NormFinder.
  • * Findings indicated that RAB10 and PFDN2 were consistently stable, while NDUFS7 and MRPL17 were the best reference gene combinations for developmental stages, thus improving qRT-PCR accuracy in future research.
View Article and Find Full Text PDF

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves.

View Article and Find Full Text PDF

As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices.

View Article and Find Full Text PDF

An environmentally friendly corrosion inhibitor was prepared from the bio-based platform 5-hydroxymethylfurfural. This corrosion inhibitor was confirmed to be an efficient mixed-type corrosion inhibitor through a weight loss experiment and electrochemical experiment. Both thermodynamic and kinetic parameters were calculated and discussed, indicating that the adsorption of this bio-based inhibitor on a steel surface is a chemisorption process.

View Article and Find Full Text PDF

Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis.

View Article and Find Full Text PDF

Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum.

View Article and Find Full Text PDF

Nerve repair poses a significant challenge in the field of tissue regeneration. As a bioengineered therapeutic method, nerve conduits have been developed to address damaged nerve repair. However, despite their remarkable potential, it is still challenging to encompass complex physiologically microenvironmental cues (both biophysical and biochemical factors) to synergistically regulate stem cell differentiation within the implanted nerve conduits, especially in a facile manner.

View Article and Find Full Text PDF

Lutjanus erythropterus (Bloch, 1790), a Perciformes from the Lutjanidae family, is a commercially important species because of its taste and abundance. Despite the increase in genome resources in recent years, few genome assemblies are available within this fish family for comparative and functional studies. In this study, we determined the chromosomal genome of Crimson snapper using high-throughput Single-Tube Long Fragment Reads sequencing technology and Hi-C data.

View Article and Find Full Text PDF

Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique.

View Article and Find Full Text PDF

Purpose: 4D fabrication techniques have been utilized for advanced biomedical therapeutics due to their ability to create dynamic constructs that can transform into desired shapes on demand. The internal structure of the human cardiovascular system is complex, where the contracting heart has a highly curved surface that changes shape with the heart's dynamic beating motion. Hence, 4D architectures that adjust their shapes as required are a good candidate to readily deliver cardiac cells into the damaged heart and/or to serve as self-morphing tissue scaffolds/patches for healing cardiac diseases.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus.

View Article and Find Full Text PDF

How to use game elements to motivate users and influence their behavior has become a new research trend, which is vital for enhancing the willingness of potential platform users to participate in environmental protection. This paper aims to analyze the influence of incentive mechanism and fit degree on user's environmental behavior based on the stimulus-organism-response theory and self-determination theory. The questionnaire data of 500 users was collected and the impact of incentives on user's environmental behavior was analyzed by structural equation modeling.

View Article and Find Full Text PDF

Successful recovery from vascular diseases has typically relied on the surgical repair of damaged blood vessels (BVs), with the majority of current approaches involving the implantation of autologous BVs, which is plagued by donor site tissue damage. Researchers have attempted to develop artificial vessels as an alternative solution to traditional approaches to BV repair. However, the manufacturing of small-diameter (< 6 mm) BVs is still considered one of the biggest challenges due to its difficulty in the precise fabrication and the replication of biomimetic architectures.

View Article and Find Full Text PDF

A novel metal- and catalyst-free dearomative reaction of 2-oxypyridines to construct -difluoromethylenated N-substituted 2-pyridones has been developed. The reaction involves an attractive acyl rearrangement from O to CF of difluorocarbene-derived pyridinium ylides, which provides a new strategy for the direct introduction of the -difluoromethylene group with high efficiency and selectivity as well as broad substrate scope. Gram-scale synthesis and synthetic transformations have also been demonstrated.

View Article and Find Full Text PDF

Clinical recovery from vascular diseases has increasingly become reliant upon the successful fabrication of artificial blood vessels (BVs) or vascular prostheses due to the shortage of autologous vessels and the high incidence of vessel graft diseases. Even though many attempts at the clinical implementation of large artificial BVs have been reported to be successful, the development of small-diameter BVs remains one of the significant challenges due to the limitation of micro-manufacturing capacity in complexity and reproducibility, as well as the development of thrombosis. The present study aims to develop 3D printed small-diameter artificial BVs that recapitulate the longitudinal geometric elements in the native BVs using biocompatible polylactic acid (PLA).

View Article and Find Full Text PDF

Objectives: Intervertebral disc degeneration (IVDD) is a leading cause of low back pain. Circular RNAs (circRNAs) have been demonstrated to exert vital functions in IVDD. However, the role and mechanism of hsa_circ_0083756 in the development of IVDD remain unclear.

View Article and Find Full Text PDF

The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues.

View Article and Find Full Text PDF

Plant cell surface and intracellular immune receptors recognizing pathogen attack utilize the same defense machineries to mobilize resistance. New genetic, protein structural and biochemical information on receptor activation and signaling is transforming understanding of how their shared defense network operates. We discuss the biochemical activities of two classes of intracellular nucleotide-binding/leucine-rich repeat (NLR) receptor - one forming a Ca channel, the other an NADase enzyme - which define engagement of enhanced disease susceptibility 1 (EDS1)-family heterodimers and cofunctioning helper NLRs (RNLs) to connect receptor systems and amplify defenses.

View Article and Find Full Text PDF

The smut fungus Sporisorium scitamineum causes the most prevalent disease on sugarcane. The mechanism of its pathogenesis, especially the functions and host targets of its effector proteins, are unknown. In order to identify putative effectors involving in S.

View Article and Find Full Text PDF

Objectives: By using DTI image segmentation algorithm investigate the effect of large plants Rhodiola injection on myocardial injury in patients with acute severe CO poisoning (ACOP), and to explore the clinical and CT delayed encephalopathy after ACOP.

Methods: Seventy-two ACOP patients were randomly divided into control and observation group, 36 cases in each group from December 2015 - December 2017. The control group received hyperbaric oxygen, mannitol, dexamethasone, citicoline injection, gangliosides, dracone; observation group were large strain Rhodiola injection treatment group based on the once daily for two weeks of continuous treatment.

View Article and Find Full Text PDF