Publications by authors named "Haishuang Chang"

The specific mechanisms underlying bacteria-triggered cell death and osteogenic dysfunction in host bone marrow mesenchymal stem cells (BMSCs) remain unclear, posing a significant challenge to the repair of infected bone defects. This study identifies ferroptosis as the predominant cause of BMSCs death in the infected bone microenvironment. Mechanistically, the bacteria-induced activation of the innate immune response in BMSCs leads to upregulation and phosphorylation of interferon regulatory factor 7 (IRF7), thus facilitating IRF7-dependent ferroptosis of BMSCs through the transcriptional upregulation of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4).

View Article and Find Full Text PDF

Cystathionine γ-lyase (CSE) is a major enzyme that produces hydrogen sulfide (HS). Herein, we report how CSE plays a previously unknown role in regulating the antioxidant effects of the mitochondria in human umbilical vein endothelial cells by releasing HS nearby under stress conditions. We found that HS partially promoted angiogenesis in the endothelial cells through the AKT/nuclear factor erythroid 2-related factor 2 (AKT/NRF2) signaling pathway.

View Article and Find Full Text PDF

The regeneration of bone defects in diabetic patients still faces challenges, as the intrinsic healing process is impaired by hyperglycemia. Inspired by the discovery that the endoplasmic reticulum (ER) is in a state of excessive stress and dysfunction under hyperglycemia, leading to osteogenic disorder, a novel engineered exosome is proposed to modulate ER homeostasis for restoring the function of mesenchymal stem cells (MSCs). The results indicate that the constructed engineered exosomes efficiently regulate ER homeostasis and dramatically facilitate the function of MSCs in the hyperglycemic niche.

View Article and Find Full Text PDF

Lipid droplets (LDs) are dynamic lipid storage organelles that can be degraded by autophagy machinery to release neutral lipids, a process called lipophagy. However, specific receptors and regulation mechanisms for lipophagy remain largely unknown. Here, we identify that ATG14, the core unit of the PI3KC3-C1 complex, also targets LD and acts as an autophagic receptor that facilitates LD degradation.

View Article and Find Full Text PDF

Antibiotics are among the most used weapons in fighting microbial infections and have greatly improved the quality of human life. However, bacteria can eventually evolve to exhibit antibiotic resistance to almost all prescribed antibiotic drugs. Photodynamic therapy (PDT) develops little antibiotic resistance and has become a promising strategy in fighting bacterial infection.

View Article and Find Full Text PDF

Tissue regeneration is regulated by morphological clues of implants in bone defect repair. Engineered morphology can boost regenerative biocascades that conquer challenges such as material bioinertness and pathological microenvironments. Herein, a correlation between the liver extracellular skeleton morphology and the regenerative signaling, namely hepatocyte growth factor receptor (MET), is found to explain the mystery of rapid liver regeneration.

View Article and Find Full Text PDF

Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance β-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis.

View Article and Find Full Text PDF

Infections caused by drug-resistant bacteria pose a great threat to human health. Non-antibiotic-dependent antibacterial strategies have become the focus of research. Among them, chemical dynamic treatment-based (CDT) therapeutic systems, which catalyze the production of hydroxyl radicals by enzymes, have achieved tremendous success for antibacterial purposes.

View Article and Find Full Text PDF

Candida auris is a multidrug-resistant human fungal pathogen responsible for nosocomial outbreaks worldwide. Although considerable progress has increased our understanding of the biological and clinical aspects of C. auris, its interaction with the host immune system is only now beginning to be investigated in-depth.

View Article and Find Full Text PDF

Background: Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated heart failure (HF) morbidity and mortality in patients with diabetes mellitus (DM). Patients with DCM exhibit subclinical diastolic dysfunction, progression toward systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of patients with DM-with the increased risk of sudden death.

View Article and Find Full Text PDF

Optic atrophy1 (OPA1) is crucial for inner mitochondrial membrane (IMM) fusion and essential for maintaining crista structure and mitochondrial morphology. Optic atrophy and hearing impairment are the most prevalent clinical features associated with mutations in the gene, but the function of OPA1 in hearing is still unknown. In this study, we examined the ability of Opa1 to protect against cisplatin-induced cochlear cell death and .

View Article and Find Full Text PDF

Current treatments for diabetic ulcers (DUs) remain unsatisfactory due to the risk of bacterial infection and impaired angiogenesis during the healing process. The increased degradation of polyubiquitinated hypoxia-inducible factor-1α (HIF-1α) compromises wound healing efficacy. Therefore, the maintenance of HIF-1α protein stability might help treat DU.

View Article and Find Full Text PDF
Article Synopsis
  • The Down syndrome cell adhesion molecule (DSCAM) is crucial for neural development, featuring a large ectodomain with various structural domains that facilitate cell adhesion and neuron organization.
  • Research using electron microscopy has revealed that mouse DSCAM creates a distinct pattern at adhesion sites, with both Ig-like and fibronectin III domains playing key roles in this structure and function.
  • Unlike DSCAM, other variants like mouse DSCAML1 do not form a noticeable assembly pattern, indicating different mechanisms behind their roles in cell adhesion and neural network development.
View Article and Find Full Text PDF

HCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection.

View Article and Find Full Text PDF

Porphyromonas gingivalis is a causative agent in the onset and progression of periodontal disease. This study aims to investigate the effects of quercetin, a natural plant product, on P. gingivalis virulence properties including gingipain, haemagglutinin and biofilm formation.

View Article and Find Full Text PDF

The special organelle-located MAVS, STING and TLR3 are important for clearing viral infections. Although TLR4 triggers NF-κB activation to produce pro-inflammatory cytokines for bacterial clearance, effectors with special organelle localization have not been identified. Here, we screened more than 280 E3 ubiquitin ligases and discovered that the endoplasmic reticulum-located Hrd1 regulates TLR4-induced inflammation during bacterial infection.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a member of Hepacivirus and belongs to the family of Flaviviridae. HCV infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV envelope proteins, E1 and E2, play critical roles in viral cell entry and act as major epitopes for neutralizing antibodies.

View Article and Find Full Text PDF

During meiotic prophase I, telomeres attach to and move on the nuclear envelope (NE), regulating chromosome movement to promote homologous pairing. Meiosis-specific proteins TERB1, TERB2 and MAJIN play a key role in this process. Here, we report the crystal structures of human TERB1-TERB2 and TERB2-MAJIN subcomplexes.

View Article and Find Full Text PDF

Fever is an evolutionarily conserved response that confers survival benefits during infection. However, the underlying mechanism remains obscure. Here, we report that fever promoted T lymphocyte trafficking through heat shock protein 90 (Hsp90)-induced α4 integrin activation and signaling in T cells.

View Article and Find Full Text PDF

Cell-cell adhesion is important for cell growth, tissue development, and neural network formation. Structures of cell adhesion molecules have been widely studied by crystallography, revealing the molecular details of adhesion interfaces. However, due to technical limitations, the overall structure and organization of adhesion molecules at cell adhesion interfaces has not been fully investigated.

View Article and Find Full Text PDF

Clearance of dead cells is critical for maintaining homeostasis and prevents autoimmunity and inflammation. When cells undergo apoptosis and necrosis, specific markers are exposed and recognized by the receptors on phagocytes. DEC205 (CD205) is an endocytotic receptor on dendritic cells with antigen presentation function and has been widely used in immune therapies for vaccine generation.

View Article and Find Full Text PDF

Dendritic cells play important roles in regulating innate and adaptive immune responses. DEC205 (CD205) is one of the major endocytotic receptors on dendritic cells and has been widely used for vaccine generation against viruses and tumors. However, little is known about its structure and functional mechanism.

View Article and Find Full Text PDF

Primexine deposition and plasma membrane undulation are the initial steps of pollen wall formation. However, little is known about the genes involved in this important biological process. Here, we report a novel gene, NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU), which functions in the early stage of pollen wall development in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF