Accurate prediction of Adverse Drug Reactions (ADRs) at the patient level is essential for ensuring patient safety and optimizing healthcare outcomes. Traditional machine learning-based methods primarily focus on predicting potential ADRs for drugs, but they often fall short of capturing the complexity of individual demographics and the variations in ADRs experienced by different people. In this study, a novel framework called Precise Adverse Drug Reaction (PreciseADR) for patient-level ADR prediction is proposed.
View Article and Find Full Text PDFGraph Neural Networks (GNNs) have demonstrated remarkable success in graph node classification task. However, their performance heavily relies on the availability of high-quality labeled data, which can be time-consuming and labor-intensive to acquire for graph-structured data. Therefore, the task of transferring knowledge from a label-rich graph (source domain) to a completely unlabeled graph (target domain) becomes crucial.
View Article and Find Full Text PDFIn scenarios like privacy protection or large-scale data transmission, data-free knowledge distillation (DFKD) methods are proposed to learn Knowledge Distillation (KD) when data is not accessible. They generate pseudo samples by extracting the knowledge from teacher model, and utilize above pseudo samples for KD. The challenge in previous DFKD methods lies in the static nature of their target distributions and they focus on learning the instance-level distributions, causing its reliance on the pretrained teacher model.
View Article and Find Full Text PDFThe application of deep learning models to precision medical diagnosis often requires the aggregation of large amounts of medical data to effectively train high-quality models. However, data privacy protection mechanisms make it difficult to perform medical data collection from different medical institutions. In autism spectrum disorder (ASD) diagnosis, automatic diagnosis using multimodal information from heterogeneous data has not yet achieved satisfactory performance.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2024
Due to the objectivity of emotional expression in the central nervous system, EEG-based emotion recognition can effectively reflect humans' internal emotional states. In recent years, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have made significant strides in extracting local features and temporal dependencies from EEG signals. However, CNNs ignore spatial distribution information from EEG electrodes; moreover, RNNs may encounter issues such as exploding/vanishing gradients and high time consumption.
View Article and Find Full Text PDFHere, we present Anchored-fusion, a highly sensitive fusion gene detection tool. It anchors a gene of interest, which often involves driver fusion events, and recovers non-unique matches of short-read sequences that are typically filtered out by conventional algorithms. In addition, Anchored-fusion contains a module based on a deep learning hierarchical structure that incorporates self-distillation learning (hierarchical view learning and distillation [HVLD]), which effectively filters out false positive chimeric fragments generated during sequencing while maintaining true fusion genes.
View Article and Find Full Text PDFIdentifying expressed somatic mutations from single-cell RNA sequencing data de novo is challenging but highly valuable. We propose RESA - Recurrently Expressed SNV Analysis, a computational framework to identify expressed somatic mutations from scRNA-seq data. RESA achieves an average precision of 0.
View Article and Find Full Text PDFAccurate detection of liver lesions from multi-phase contrast-enhanced CT (CECT) scans is a fundamental step for precise liver diagnosis and treatment. However, the analysis of multi-phase contexts is heavily challenged by the misalignment caused by respiration coupled with the movement of organs. Here, we proposed an AI system for multi-phase liver lesion segmentation (named MULLET) for precise and fully automatic segmentation of real-patient CECT images.
View Article and Find Full Text PDFRecent research efforts on Few-Shot Learning (FSL) have achieved extensive progress. However, the existing efforts primarily focus on the transductive setting of FSL, which is heavily challenged by the limited quantity of the unlabeled query set. Although a few inductive-based FSL methods have been studied, most of them emphasize learning superb feature extraction networks.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2022
In healthcare, training examples are usually hard to obtain (e.g., cases of a rare disease), or the cost of labelling data is high.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
In recent years, due to the fundamental role played by the central nervous system in emotion expression, electroencephalogram (EEG) signals have emerged as the most robust signals for use in emotion recognition and inference. Current emotion recognition methods mainly employ deep learning technology to learn the spatial or temporal representation of each channel, then obtain complementary information from different EEG channels by adopting a multi-modal fusion strategy. However, emotional expression is usually accompanied by the dynamic spatio-temporal evolution of functional connections in the brain.
View Article and Find Full Text PDFThe unprecedented outbreak of the Corona Virus Disease 2019 (COVID-19) pandemic has seriously affected numerous countries in the world from various aspects such as education, economy, social security, public health, etc. Most governments have made great efforts to control the spread of COVID-19, e.g.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
October 2022
An accurate estimation of glomerular filtration rate (GFR) is clinically crucial for kidney disease diagnosis and predicting the prognosis of chronic kidney disease (CKD). Machine learning methodologies such as deep neural networks provide a potential avenue for increasing accuracy in GFR estimation. We developed a novel deep learning architecture, a deep and shallow neural network, to estimate GFR (dlGFR for short) and examined its comparative performance with estimated GFR from Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations.
View Article and Find Full Text PDFA challenging issue in the field of the automatic recognition of emotion from speech is the efficient modelling of long temporal contexts. Moreover, when incorporating long-term temporal dependencies between features, recurrent neural network (RNN) architectures are typically employed by default. In this work, we aim to present an efficient deep neural network architecture incorporating Connectionist Temporal Classification (CTC) loss for discrete speech emotion recognition (SER).
View Article and Find Full Text PDFBackground: In the United States, about 3 million people have autism spectrum disorder (ASD), and around 1 out of 59 children are diagnosed with ASD. People with ASD have characteristic social communication deficits and repetitive behaviors. The causes of this disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified.
View Article and Find Full Text PDFComput Intell Neurosci
February 2021
The classification process of lung nodule detection in a traditional computer-aided detection (CAD) system is complex, and the classification result is heavily dependent on the performance of each step in lung nodule detection, causing low classification accuracy and high false positive rate. In order to alleviate these issues, a lung nodule classification method based on a deep residual network is proposed. Abandoning traditional image processing methods and taking the 50-layer ResNet network structure as the initial model, the deep residual network is constructed by combining residual learning and migration learning.
View Article and Find Full Text PDFIdentifying potential protein-ligand interactions is central to the field of drug discovery as it facilitates the identification of potential novel drug leads, contributes to advancement from hits to leads, predicts potential off-target explanations for side effects of approved drugs or candidates, as well as de-orphans phenotypic hits. For the rapid identification of protein-ligand interactions, we here present a novel chemogenomics algorithm for the prediction of protein-ligand interactions using a new machine learning approach and novel class of descriptor. The algorithm applies Bayesian Additive Regression Trees (BART) on a newly proposed proteochemical space, termed the bow-pharmacological space.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2019
With increased use of electronic medical records (EMRs), data mining on medical data has great potential to improve the quality of hospital treatment and increase the survival rate of patients. Early readmission prediction enables early intervention, which is essential to preventing serious or life-threatening events, and act as a substantial contributor to reduce healthcare costs. Existing works on predicting readmission often focus on certain vital signs and diseases by extracting statistical features.
View Article and Find Full Text PDF