This paper reports a MEMS capacitive pressure sensor (CPS) based on the operating principle of touch mode. The CPS was designed and fabricated using wafer-level self-packaged MEMS processes. The variable capacitance sensing structure was vacuum-sealed in a cavity using the Si-glass anodic bonding technique, and the embedded Al feedthrough lines at the Si-glass interface were used to realize the electrical connections between the parallel plate electrodes and the electrode pads through Al vias.
View Article and Find Full Text PDFThis paper presents the design, fabrication, and characterization of a middle-infrared (MIR) linear variable optical filter (LVOF) and thermopile detectors that will be used in a miniaturized mixed gas detector for CH/CO/CO measurement. The LVOF was designed as a tapered-cavity Fabry-Pérot optical filter, which can transform the MIR continuous spectrum into multiple narrow band-pass spectra with peak wavelength in linear variation. Multi-layer dielectric structures were used to fabricate the Bragg reflectors on the both sides of tapered cavity as well as the antireflective film combined with the function of out-of-band rejection.
View Article and Find Full Text PDFMicromachines (Basel)
May 2019
High frequency surface acoustic wave (SAW) technology offers many opportunities for aerospace applications in passive wireless sensing and communication. This paper presents the design, simulation, fabrication, and test of an -band SAW resonator based on 128° Y-X LiNbO substrate. The design parameters of SAW resonator were optimized by the finite element (FEM) method and the coupling-of-mode (COM) theory.
View Article and Find Full Text PDFUtilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to their low energy conversion efficiency (ECE). Here we report a betavoltaic cell fabricated using black titania nanotube arrays (TiO2 NTAs) by electrochemical anodization and Ar-annealing techniques. The obtained samples show enhanced electrical conductivity as well as Vis-NIR light absorption by the introduction of oxygen vacancy (OV) and Ti3+ defects in reduced TiO2-x NTAs.
View Article and Find Full Text PDFUtilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to low energy conversion efficiency. Here, we report a betavoltaic cell fabricated using TiO nanotube arrays (TNTAs) electrochemically reduced in ethylene glycol electrolyte (EGECR-TNTAs) for the enhancement of the betavoltaic effect. The electrochemical reduction of TNTAs using high cathodic bias in organic electrolytes is indeed a facile and effective strategy to induce in situ self-doping of oxygen vacancy (OV) and Ti defects.
View Article and Find Full Text PDFThe weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO) for ultraviolet (UV) photoresponse enhancement.
View Article and Find Full Text PDFMicromachines (Basel)
September 2016
Designs and simulations of silicon-based micro-electromechanical systems (MEMS) infrared (IR) thermal emitters for gas sensing application are presented. The IR thermal emitter is designed as a bridge-style hotplate (BSH) structure suspended on a silicon frame for realizing a good thermal isolation between hotplate and frame. For investigating the reliability of BSH structure, three kinds of fillet structures were designed in the contact corner between hotplate and frame.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
We report a novel betavoltaic device with significant conversion efficiency by using electrochemically reduced graphene oxide (ERGO) on TiO2 nanotube arrays (TNTAs) for enhancing the absorption of beta radiation as well as the transportation of carriers. ERGO on TNTAs (G-TNTAs) were prepared by electrochemical anodization and subsequently cyclic voltammetry techniques. A 10 mCi of (63)Ni/Ni source was assembled to G-TNTAs to form the sandwich-type betavoltaic devices (Ni/(63)Ni/G-TNTAs/Ti).
View Article and Find Full Text PDFAppl Radiat Isot
October 2013
The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy.
View Article and Find Full Text PDFAppl Radiat Isot
October 2012
In this paper, we present the design and simulation of a p-n junction betavoltaic battery based on large-grain polysilicon. By the Monte Carlo simulation, the average penetration depth were obtained, according to which the optimal depletion region width was designed. The carriers transport model of large-grain polysilicon is used to determine the diffusion length of minority carrier.
View Article and Find Full Text PDF