Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified the zinc finger-homeodomain (ZF-HD) family in quinoa and a drought-responsive Chenopodium quinoa ZF-HD14 (CqZF-HD14) through expression profiles.
View Article and Find Full Text PDFAluminum (Al) stress in acidic soils has severe negative effects on crop productivity. In this study, the alleviating effect and related mechanism of malate on Al stress in quinoa (Chenopodium quinoa) seedlings were investigated. The findings indicated that malate alleviated the growth inhibition of quinoa seedlings under Al stress, maintained the enzymatic and nonenzymatic antioxidant systems, and aided resistance to the damage caused by excessive reactive oxygen species (ROS).
View Article and Find Full Text PDFCadmium (Cd) has a serious negative impact on crop growth and human food security. This study investigated the alleviating effect of β-cyclocitral, a potential heavy metal barrier, on Cd stress in quinoa seedlings and the associated mechanisms. Our results showed that β-cyclocitral alleviated Cd stress-induced growth inhibition in quinoa seedlings and promoted quinoa seedling root development under Cd stress.
View Article and Find Full Text PDF