Background And Aims: Hepatic steatosis (HS), particularly macrovesicular steatosis (MaS), influences transplant outcomes. Accurate assessment of MaS is crucial for graft selection. While traditional assessment methods have limitations, non-invasive spectroscopic techniques like Raman and reflectance spectroscopy offer promise.
View Article and Find Full Text PDFAn integrated system for in vivo multi-spectral imaging (MSI) and Raman spectroscopy was developed to understand the external morphology and internal molecular information of biological tissues. The achieved MSI images were reconstructed by eighteen separated images from 400 nm to 760 nm, whose illumination bands were selected with six tri-channel band filters. Based on the spectral analysis algorithms, the spatial distribution patterns of blood volume, blood oxygen content and tissue scatterer volume fraction were visualized.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a debilitating neurological and pathological condition that results in significant impairments in motor, sensory, and autonomic functions. By integrating multispectral imaging (MSI) with Raman spectroscopy, a label-free optical methodology was developed for achieving a non-invasive in vivo understanding on the pathological features of SCI evolution. Under the guidance of captured the spectral imaging data cube with a rigid endoscope based MSI system, a special designed fiber probe passed through the instrumental channel for acquiring the finger-print spectral information from compression rat SCI models.
View Article and Find Full Text PDFWe developed an automated microregistration method that enables repeated in vivo skin microscopy imaging of the same tissue microlocation and specific cells over a long period of days and weeks with unprecedented precision. Applying this method in conjunction with an in vivo multimodality multiphoton microscope, the behavior of human skin cells such as cell proliferation, melanin upward migration, blood flow dynamics, and epidermal thickness adaptation can be recorded over time, facilitating quantitative cellular dynamics analysis. We demonstrated the usefulness of this method in a skin biology study by successfully monitoring skin cellular responses for a period of two weeks following an acute exposure to ultraviolet light.
View Article and Find Full Text PDFA coherent anti-Stokes Raman scattering (CARS)-based multimodality microscopy system was developed using a single Ti:sapphire femtosecond laser source for biological imaging. It provides three complementary and co-registered imaging modalities: CARS, MPM (multiphoton microscopy), and RCM (reflectance confocal microscopy). The imaging speed is about 1 frame-per-second (fps) with a digital resolution of 1024 × 1024 pixels.
View Article and Find Full Text PDFRaman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with a buffer gas inside the hollow-core photonic-crystal fiber (HCPCF) of a fiber-enhanced Raman spectroscopy (FERS) system. This results in an enhanced Raman signal from the analyte gas.
View Article and Find Full Text PDFWe previously developed a hollow-core photonic crystal fiber (HCPCF) based Raman scattering enhancement technique for gas/human breath analysis. It enhances photon-gas molecule interactions significantly but is still based on CW laser excitation spontaneous Raman scattering, which is a low-probability phenomenon. In this work, we explored nanosecond/sub-nanosecond pulsed laser excitation in HCPCF based fiber enhanced Raman spectroscopy (FERS) and successfully induced stimulated Raman scattering (SRS) enhancement.
View Article and Find Full Text PDFPhotodermatol Photoimmunol Photomed
September 2023
Background/purpose: A recent direction in skin disease classification is to develop quantitative diagnostic techniques. Skin relief, colloquially known as roughness, is an important clinical feature. The aim of this study is to demonstrate a novel polarization speckle technique to quantitatively measure roughness on skin lesions in vivo.
View Article and Find Full Text PDFPericarpium Citri Reticulatae (PCR) is used in food and medical herbal formula, and its quality is determined by its age. Raman spectroscopy is a laser technology for molecular fingerprinting. The feasibility of using surface-enhanced Raman spectroscopy (SERS) to determine the PCR age was investigated.
View Article and Find Full Text PDFDuring liver procurement, surgeons mostly rely on their subjective visual inspection of the liver to assess the degree of fatty infiltration, for which misclassification is common. We developed a Raman system, which consists of a 1064 nm laser, a handheld probe, optical filters, photodiodes, and a lock-in amplifier for real-time assessment of liver fat contents. The system performs consistently in normal and strong ambient light, and the excitation incident light penetrates at least 1 mm into duck fat phantoms and duck liver samples.
View Article and Find Full Text PDFPurpose: Aberrant activation of STAT3 signal pathway promotes tumor progression in many solid tumor types, including cervical cancer and endometrial cancer. BBI608, the STAT3 inhibitor had been reported in previous studies for restraining cancer stem cells. However, whether BBI608 is available for inhibiting the proliferation of cervical cancer or endometrial cancer remains poorly understood.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2023
The tumor-node-metastasis (TNM) system is the most common way that doctors determine the anatomical extent of cancer on the basis of clinical and pathological criteria. In this study, a spectral histopathological study has been carried out to bridge Raman micro spectroscopy with the breast cancer TNM system. A total of seventy breast tissue samples, including healthy tissue, early, middle, and advanced cancer, were investigated to provide detailed insights into compositional and structural variations that accompany breast malignant evolution.
View Article and Find Full Text PDFBy using Raman microspectroscopy, it aims to elucidate the cellular variations caused by the combination drug of γ-secretase inhibitor (DAPT) and cisplatin in osteosarcoma (OS) cells. Illustrated by the obtained results of spectral analysis, the intracellular composition significantly changed after combined drug actions compared to the solo DAPT treatment, indicating the synergistic effect of DAPT combined with cisplatin on OS cells. Meanwhile, multivariate curve resolution-alternating least squares (MCR-ALS) algorithm was utilized to address the biochemical constitution changes in all investigated groups including the untreated (UT), DAPT (40D) and combined drug (40D + 20C) treated cells.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2022
Confocal Raman Microspectroscopy (CRM) was employed to clarify the cellular response of cisplatin in osteosarcoma (OS) cells with different dosages and incubation times. The K7M2 mouse osteosarcoma cells were treated by cisplatin in 0 μM (UT group), 20 μM (20 T group), and 40 μM (40 T group) doses for 24-h (24H group) and 48-h (48H group), respectively. Raman spectroscopy was utilized to analyze the drug induced variations of intracellular biochemical components in osteosarcoma cells.
View Article and Find Full Text PDFBiomed Opt Express
September 2021
The aim of this study was to clarify the dose- and time-dependent effect of the γ-secretase inhibitor (DAPT) combined with cisplatin on osteosarcoma (OS) cells, evaluated by confocal Raman microspectral imaging (CRMI) technology. The intracellular composition significantly changed after combined drug action compared with the sole cisplatin treatment, proving the synergistic effect of DAPT combined with cisplatin on OS cells. The principal component analysis-linear discriminant analysis revealed the main compositional variations by distinguishing spectral characteristics.
View Article and Find Full Text PDFConfocal Raman microspectral imaging (CRMI) has been used to detect the spectra-pathological features of ductal carcinoma in situ (DCIS) and lobular hyperplasia (LH) compared with the heathy (H) breast tissue. A total of 15-20 spectra were measured from healthy tissue, LH tissue, and DCIS tissue. One-way ANOVA and Tukey's honest significant difference (HSD) post hoc multiple tests were used to evaluate the peak intensity variations in all three tissue types.
View Article and Find Full Text PDFWe herein report a novel, reliable and inexpensive method for detecting esophageal cancer using blood plasma resonance Raman spectroscopy combined with multivariate analysis methods. The blood plasma samples were divided into late stage cancer group (n = 164), early stage cancer group (n = 35) and normal group (n = 135) based on clinical pathological diagnosis. Using a specially designed quartz capillary tube as sample holder, we obtained higher quality resonance Raman spectra of blood plasma than existing method.
View Article and Find Full Text PDFConfocal Raman microspectral analysis and imaging were used to elucidate the drug response of osteosarcoma (OS) to cisplatin. Raman spectral data were obtained from OS cells that were untreated (UT group) and treated with 20 µM (20T group) and 40 µM (40T group) cisplatin for 24 hours. Statistical analysis of the changes in specific Raman signals was performed using a one-way ANOVA and multiple Tukey's honest significant difference (HSD) post hoc tests.
View Article and Find Full Text PDFRoutine monitoring of kidney transplant function is required for the standard care in post-transplantation management, including frequent measurements of serum creatinine with or without kidney biopsy. However, the invasiveness of these methods with potential for clinically significant complications makes them less than ideal. The objective of this study was to develop a non-invasive tool to monitor the kidney transplant function by using Surface-Enhanced Raman Spectroscopy (SERS).
View Article and Find Full Text PDFAging (Albany NY)
November 2020
Growing evidence suggests that microbes can influence the onset of cancer and its consequent development. By researching samples from patients afflicted by cervical cancer, we aimed to explore the associated dynamics and prognostic value of intratumoral levels of . We used qPCR to analyze tumor tissues obtained from 112 cervical cancer patients in order to characterize the levels and influences of intratumoral levels of the .
View Article and Find Full Text PDFChronic kidney disease (CKD) affects more than 10% of the global population and is associated with significant morbidity and mortality. In most cases, this disease is developed silently, and it can progress to the end-stage renal failure. Therefore, early detection becomes critical for initiating effective interventions.
View Article and Find Full Text PDFOur recent investigation uncovered that the acid ceramidase inhibitor LCL521 enhances the direct tumor cell killing effect of photodynamic therapy (PDT) treatment. The present study aimed at elucidating the mechanisms underlying this effect. Exposing mouse squamous cell carcinoma SCCVII cells treated with temoporfin-based PDT to LCL521 (rising ceramide concentration) produced a much greater decrease in cell survival than comparable exposure to the sphingosine kinase-1 inhibitor PF543 (that reduces sphingosine-1-phosphate concentration).
View Article and Find Full Text PDFUsing confocal Raman micro-spectroscopy, this study aims to elucidate the cellular responses of the γ-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), in osteosarcoma (OS) cells in a dose- and time-dependent manner. The K7M2 murine OS cell line was treated with different DAPT doses (0, 10, 20, and 40 μM) for 24 and 48 hours before investigations. Significant compositional changes (nucleic acids, protein and lipid) after DAPT treatment were addressed, which testified inhibitory effect of DAPT on the growth of OS cells.
View Article and Find Full Text PDFBackground: Multiphoton microscopy (MPM) offers a feasible approach for the biopsy in clinical medicine, but it has not been used in clinical applications due to the lack of efficient image processing methods, especially the automatic segmentation technology. Segmentation technology is still one of the most challenging assignments of the MPM imaging technique.
Methods: The MPM imaging segmentation model based on deep learning is one of the most effective methods to address this problem.