Publications by authors named "Hairong Luo"

Aims/hypothesis: cGAS (cyclic GMP-AMP synthase) has been implicated in various cellular processes, but its role in β-cell proliferation and diabetes is not fully understood. This study investigates the impact of cGAS on β-cell proliferation, particularly in the context of diabetes.

Methods: Utilizing mouse models, including cGAS and STING (stimulator of interferon genes) knockout mice, we explored the role of cGAS in β-cell function.

View Article and Find Full Text PDF

Striking similarities in morphological characters and significant overlap in meristic features have resulted in different hypotheses regarding the taxonomic status of several nominal species of northwestern Pacific tongue soles of the genus Cynoglossus, including C. joyneri Gnther, 1878, C. lighti Norman, 1925, C.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) stands as a prevalent obstetric complication bearing consequential health implications for both mother and child. While existing studies have probed the alterations in acylcarnitines during GDM, an updated systematic meta-analysis is needed to consolidate these findings. Hence, this study endeavours to furnish a comprehensive systematic review and meta-analysis delineating the association between acylcarnitines and GDM, aimed at bolstering diagnostic accuracy and preventive measures against GDM.

View Article and Find Full Text PDF

Leptin acts on hypothalamic neurons expressing agouti-related protein (AgRP) or pro-opiomelanocortin (POMC) to suppress appetite and increase energy expenditure, but the intracellular mechanisms that modulate central leptin signalling are not fully understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an adaptor protein that binds to the insulin receptor and negatively regulates its signalling pathway, can interact with the leptin receptor and enhance leptin signalling. Ablation of Grb10 in AgRP neurons promotes weight gain, while overexpression of Grb10 in AgRP neurons reduces body weight in male and female mice.

View Article and Find Full Text PDF

Pancreatic β cell failure is a hallmark of diabetes. However, the causes of β cell failure remain incomplete. Here, we report the identification of tetranectin (TN), an adipose tissue-enriched secretory molecule, as a negative regulator of insulin secretion in β cells in diabetes.

View Article and Find Full Text PDF

A series of novel galactoside derivatives containing 1,3,4-thiadiazole moiety were synthesized, and the structure of them was verified by spectroscopy of NMR and HRMS, and antifungal and antibacterial activities of them were screened. The results showed that the newly synthesized compounds had good antifungal activities. Among them, Ⅲ16, Ⅲ17, and Ⅲ19 exhibited satisfactory activities against , with EC values of 5.

View Article and Find Full Text PDF

Decreased functional β-cell mass is the hallmark of diabetes, but the cause of this metabolic defect remains elusive. Here, we show that the levels of the growth factor receptor-bound protein 10 (GRB10), a negative regulator of insulin and mTORC1 signaling, are markedly induced in islets of diabetic mice and high glucose-treated insulinoma cell line INS-1 cells. β-cell-specific knockout of Grb10 in mice increased β-cell mass and improved β-cell function.

View Article and Find Full Text PDF

Dysregulation in adipokine biosynthesis and function contributes to obesity-induced metabolic diseases. However, the identities and functions of many of the obesity-induced secretory molecules remain unknown. Here, we report the identification of leucine-rich alpha-2-glycoprotein 1 (LRG1) as an obesity-associated adipokine that exacerbates high fat diet-induced hepatosteatosis and insulin resistance.

View Article and Find Full Text PDF

Reduced β-cell mass and impaired β-cell function are primary causes of all types of diabetes. However, the intrinsic molecular mechanism that regulates β-cell growth and function remains elusive. Here, we demonstrate that the small GTPase Rheb1 is a critical regulator of glucose-stimulated insulin secretion (GSIS) in β-cells.

View Article and Find Full Text PDF

A dynamically regulated microenvironment, which is mediated by crosstalk between adipocytes and neighboring cells, is critical for adipose tissue homeostasis and function. However, information on key molecules and/or signaling pathways regulating the crosstalk remains limited. In this study, we identify adipocyte miRNA-182-5p (miR-182-5p) as a crucial antiobesity molecule that stimulated beige fat thermogenesis by promoting the crosstalk between adipocytes and macrophages.

View Article and Find Full Text PDF

The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei.

View Article and Find Full Text PDF

A series of novel 1,3,4-thiadiazole derivatives of glucosides were synthesized by the starting materials -glucose and 5-amino-1,3,4-thiadiazole-2-thiol in good yields with employing a convergent synthetic route. The results of bioactivities showed that some of the target compounds exhibited good antifungal activities. Especially, compounds showed higher bioactivities against (), with the EC values of 3.

View Article and Find Full Text PDF

Adipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance.

View Article and Find Full Text PDF

Many early studies of ribosomal RNA gene (rDNA) suggested that rDNA tandem repeats within species are homogeneous. However, increasing number of reports have found intra-individual rDNA polymorphism across a range of taxa. Here, we reported a high level of intra-individual polymorphism of 18S-ITS1-5.

View Article and Find Full Text PDF

Rhododendron lapponicum L. is a familiar ornamental plant worldwide with important ornamental and economic value. However, a full-length R.

View Article and Find Full Text PDF

Mitochondrial genome (mitogenome) structure and gene order are generally considered conserved in vertebrates. However, the flatfish (Pleuronectiformes) mitogenomes exhibit the most diversified gene rearrangement patterns. Here, we report a newly sequenced mitogenome of Cynoglossus melampetalus (Pleuronectiformes: Cynoglossidae).

View Article and Find Full Text PDF

Aims: The antimicrobial peptide cathelicidin (Camp) has multifunctional immunomodulatory activities. However, its roles in inflammation-related myocardial ischemia/reperfusion (MI/R) injury remain unclear.

Methods And Results: In this study, adult male C57BL/6 wild-type (WT) mice were subjected to MI/R injury by left anterior descending coronary artery ligation for 45 min followed by 3 or 24 h of reperfusion.

View Article and Find Full Text PDF

Background: The mitogenomes of 12 teleost fish of the bothid family (order Pleuronectiformes) indicated that the genomic-scale rearrangements characterized in previous work. A novel mechanism of genomic rearrangement called the Dimer-Mitogenome and Non-Random Loss (DMNL) model was used to account for the rearrangement found in one of these bothids, Crossorhombus azureus.

Results: The 18,170 bp mitogenome of G.

View Article and Find Full Text PDF

Background: High-fat-diet induces pancreatic β-cell compensatory proliferation, and impairments in pancreatic β-cell proliferation and function can lead to defects in insulin secretion and diabetes. NFATc3 is important for HFD-induced adipose tissue inflammation. But it is unknown whether NFATc3 is required for β cell compensatory growth in mice fed with HFD.

View Article and Find Full Text PDF

Objective: Macrophage foam cell formation is an important process in atherosclerotic plaque development. The small GTPase Rheb (Ras homolog enriched in brain 1) regulates endocytic trafficking that is critical for foam cell formation. However, it is unclear whether and how macrophage Rheb regulates atherogenesis, which are the focuses of the current study.

View Article and Find Full Text PDF

Increasing brown and beige fat thermogenesis have an anti-obesity effect and thus great metabolic benefits. However, the molecular mechanisms regulating brown and beige fat thermogenesis remain to be further elucidated. We recently found that fat-specific knockout of Rheb promoted beige fat thermogenesis.

View Article and Find Full Text PDF

The eukaryotic ribosomal DNA (rDNA) cluster consists of multiple copies of three genes (18S, 5.8S, and 28S rDNA) and two internal transcribed spacers (ITS1 and ITS2). Typically, rDNA is thought to be evolved in a strict concerted evolution pattern, in which show little or even no variations within species, while sequence diversity between species or higher taxa.

View Article and Find Full Text PDF

The complete mitochondrial genome of marine fish was sequenced by the high throughput sequencing method. The genome of this species is 16,776 bp in length, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one large non-coding region. The gene arrangement of .

View Article and Find Full Text PDF

Highly conserved 18S rDNA sequences encode ribosomal RNA and evolve in a concerted manner. In this study, 178 sequences of 18S rDNA from the ridge-eyed flounder, Pleuronichthys cornutus, were analyzed. The total sequences yielded five distinguishable types of 18S rDNA-A, B, R, S, and L-that were defined based on sequence alignments, clone clustering, and recombination detection.

View Article and Find Full Text PDF