To endow non-antibacterial molecules with highly efficient bactericide activity is an important but challenging issue. Herein, a kind of cell-penetrating peptide octa-arginine (R8) is found to be effective in activating antibacterial ability when assembling with anionic surfactant sodium dodecyl sulfate (SDS), while individual R8 or SDS shows poor or no antibacterial ability. By combined electrostatic, hydrogen bond, and hydrophobic interactions, R8 and SDS associate into wormlike micelle and lamellar structure by forming supramolecular self-assembling units, depending on their charge ratio (CR).
View Article and Find Full Text PDFCoarse-grained force field (CGFF) methods were applied to study the self-assembly of sodium dodecyl sulfate with fragrance additives. The CGFF parameters were parameterized and validated using experimental and all-atom simulation data. Direct molecular dynamics simulations were carried out to characterize the initial aggregation, partitioning of fragrances, and chemical potentials of the surfactant and fragrance molecules in aggregates of different sizes.
View Article and Find Full Text PDFThe influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules.
View Article and Find Full Text PDF