Cochlear implantation (CI) is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses. Since its inception in 1961, cochlear implantation has expanded its range of applications to encompass younger newborns, older people, and individuals with unilateral hearing loss. In addition, it has improved its surgical methods to minimize the occurrence of complications.
View Article and Find Full Text PDFBackground: Follow-up of cochlear implant effectiveness is mainly focused on 3 years postoperatively, and studies with more than 5 years of observation are rare, especially for local Chinese brands.
Objectives: Nurotron (Chinese domestic cochlear implant brand) CI recipients who participated in the clinical trial in 2009 were followed-up for 10 years prospectively, providing data to guide doctors and patients.
Material And Methods: From December 2009 to April 2010, 57 subjects underwent Nurotron Venus CI surgery at multiple-centers, and were continued to be followed up and assessed at 1, 2, 3, 4, 5, and 10 years after switch on.
Background: In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown.
Objectives: To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion.
Is cochlear implant (CI) electrode selection for cochleae with an enlarged vestibular aqueduct (EVA) the same as that for patent cochleae with a normal inner ear structure? Preoperative high-resolution computed tomography (HRCT) images of 247 ears were assessed retrospectively. The A-value, B-value, and H-value were measured with OTOPLAN, and Bell curves were created to show the distribution. All ears with EVA were re-evaluated using a 3D slicer to confirm whether incomplete partition type II (IP II) existed.
View Article and Find Full Text PDFMolecular ultrasound imaging is a promising strategy for non-invasive and precise cancer diagnosis. Previously reported ultrasound contrast agents (UCAs) are mostly microbubbles or nanobubbles (NBs) larger than 200 nm, leading to less efficient tumor delivery. Here we synthesized NBs with a small size (~49 nm) and modified the NB surface with alanine-alanine-asparagine (NB-A) or arginine-glycine-aspartic acid peptide (NB-R) for concurrent active targeting towards legumain in tumor cells and integrin in tumor neovasculature.
View Article and Find Full Text PDFInhibition of asparagine endopeptidase (AEP) has been implied to be effective for treating tau- and amyloid-beta-mediated neurodegenerative diseases, although a method for targeted intracerebral delivery of AEP inhibitors has not yet been achieved. Here, we fabricated ultrasound-responsive nanobubbles (NBs) to load AEP inhibitor RR-11a, and modified the NB surface with either AEP recognizable peptide AAN or pro-transendothelial transversal motif RGD, i.e.
View Article and Find Full Text PDF