This paper develops a framework for extracting sub-canopy topography from the TanDEM-X digital elevation model (DEM) by fusing ALOS-2 PARSAR-2 interferometric synthetic aperture radar (InSAR) coherence and Global Ecosystem Dynamics Investigation (GEDI) data. The main idea of this method is to estimate the forest height signals caused by the limited penetration of the X-band into the canopy from the TanDEM-X DEM. To achieve this goal, a spaceborne repeat-pass InSAR coherent scattering model is first used to estimate the forest height by the ALOS-2 PARSAR-2 InSAR coherence (APIC), taking the GEDI canopy height as the reference.
View Article and Find Full Text PDFThe global digital elevation model (DEM) is important for various scientific applications. With the recently released TanDEM-X 90-m DEM and AW3D30 version 2.2, the open global or near-global coverage DEM datasets have been further expanded.
View Article and Find Full Text PDFSynthetic aperture radar tomography (TomoSAR) is an important way of obtaining underlying topography and forest height for long-wavelength datasets such as L-band and P-band radar. It is usual to apply nonparametric spectral estimation methods with a large number of snapshots over forest areas. The nonparametric iterative adaptive approach for amplitude and phase estimation (IAA-APES) can obtain a high resolution; however, it only tends to work well with a small number of snapshots.
View Article and Find Full Text PDF