Publications by authors named "Haiping Jia"

Atopic dermatitis (AD) is a common allergic inflammatory skin condition mainly caused by gene variants, immune disorders, and environmental risk factors. The T helper (Th) 2 immune response mediated by interleukin (IL)-4/13 is generally believed to be central in the pathogenesis of AD. It has been shown that innate lymphoid cells (ILCs) play a major effector cell role in the immune response in tissue homeostasis and inflammation and fascinating details about the interaction between innate and adaptive immunity.

View Article and Find Full Text PDF

Janus kinase (JAK) inhibitors have become promising treatments for atopic dermatitis (AD), however no study directly comparing JAK inhibitors with each other has been reported. We conducted this network meta-analysis to determine the comparative efficacy and safety of three common oral JAK inhibitors including abrocitinib, baricitinib, and upadacitinib for moderate-to-severe AD. We first identified eligible studies from published meta-analyzes, then we searched PubMed to obtain additional studies published between February and July 2021.

View Article and Find Full Text PDF

Primary congenital glaucoma (PCG) is an ocular disease characterized by congenital anterior segmental maldevelopment with progressive optic nerve degeneration. Certain genes, such as cytochrome P450 family 1 subfamily B member 1 and latent TGF--binding protein 2, are involved in the pathogenesis of PCG, but the exact pathogenic mechanism has not yet been fully elucidated. There is an urgent need to determine the etiology and pathophysiology of PCG and develop new therapeutic methods to stop disease progression.

View Article and Find Full Text PDF

Solid-electrolyte interphases is essential for stable cycling of rechargeable batteries. The traditional approach for interphase design follows the decomposition of additives prior to the host electrolyte, which, as governed by the thermodynamic rule, however, inherently limits the viable additives. Here we report an alternative approach of using a nonsacrificial additive.

View Article and Find Full Text PDF

Angiosarcoma is a rare, highly aggressive malignant tumor originating from endothelial cells that line the lumen of blood or lymphatic vessels. The molecular mechanisms of scalp and face angiosarcoma still need to be elucidated. This study aimed to investigate the expression of phosphatase and tensin homolog (PTEN), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphorylated mitogen-activated kinase-like protein (pMAPK), and tumor protein p53 (TP53) in scalp and face angiosarcoma and to assess tumor tissue apoptosis.

View Article and Find Full Text PDF

The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a complex connective tissue disease that is primarily characterized by cardiovascular, ocular and skeletal systems disorders. Despite its rarity, MFS severely impacts the quality of life of the patients. It has been shown that molecular genetic factors serve critical roles in the pathogenesis of MFS.

View Article and Find Full Text PDF

Nosocomial infections, also known as hospital-acquired infections, pose a serious challenge to healthcare professionals globally during the Coronavirus disease 2019 (COVID‑19) pandemic. Nosocomial infection of COVID‑19 directly impacts the quality of life of patients, as well as results in extra expenditure to hospitals. It has been shown that COVID‑19 is more likely to transmit via close, unprotected contact with infected patients.

View Article and Find Full Text PDF

It is classically well perceived that cathode-air interfacial reactions, often instantaneous and thermodynamic non-equilibrium, will lead to the formation of interfacial layers, which subsequently, often vitally, control the behaviour and performance of batteries. However, understanding of the nature of cathode-air interfacial reactions remain elusive. Here, using atomic-resolution, time-resolved in-situ environmental transmission electron microscopy and atomistic simulation, we reveal that the cathode-water interfacial reactions can lead to the surface passivation, where the resultant conformal LiOH layers present a critical thickness beyond which the otherwise sustained interfacial reactions are arrested.

View Article and Find Full Text PDF

Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li PO (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm and achieves a high critical current density of 2.

View Article and Find Full Text PDF

Porous structured silicon has been regarded as a promising candidate to overcome pulverization of silicon-based anodes. However, poor mechanical strength of these porous particles has limited their volumetric energy density towards practical applications. Here we design and synthesize hierarchical carbon-nanotube@silicon@carbon microspheres with both high porosity and extraordinary mechanical strength (>200 MPa) and a low apparent particle expansion of ~40% upon full lithiation.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play important roles in the pathogenesis of various diseases, including diabetic nephropathy (DN). However, the detailed mechanism is still largely unknown. High-glucose treated SV40-MES13 cells was used to mimic diabetic nephropathy in vitro.

View Article and Find Full Text PDF

Alloy-based nanostructure anodes have the privilege of alleviating the challenges of large volume expansion and improving the cycling stability and rate performance for high energy lithium- and sodium-ion batteries (LIBs and SIBs). Yet, they face the dilemma of worsening the parasitic reactions at the electrode-electrolyte interface and low packing density for the fabrication of practical electrodes. Here, pomegranate Sb@C yolk-shell microspheres were developed as a high-performance anode for LIBs and SIBs with controlled interfacial properties and enhanced packing density.

View Article and Find Full Text PDF

The long-term cycling performance, rate capability, and voltage stability of lithium (Li) metal batteries with LiNi Mn Co O (NMC76) cathodes is greatly enhanced by lithium bis(oxalato)borate (LiBOB) additive in the LiPF -based electrolyte. With 2 % LiBOB in the electrolyte, a Li∥NMC76 cell is able to achieve a high capacity retention of 96.8 % after 200 cycles at C/3 rate (1 C=200 mA g ), which is the best result reported for a Ni-rich NMC cathode coupled with Li metal anode.

View Article and Find Full Text PDF

In this work, a ZnFe2O4 anode material was successfully synthesized by a novel ionic liquid-assisted synthesis method followed by a carbon coating procedure. The as-prepared ZnFe2O4 particles demonstrate a relatively homogeneous particle size distribution with particle diameters ranging from 40 to 80 nm. This material, which is well known to offer an interesting combination of an alloying and conversion mechanism, is capable of accommodating nine equivalents of lithium per unit formula, resulting in a high specific capacity (≥ 1,000 mAh g-1).

View Article and Find Full Text PDF

In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis).

View Article and Find Full Text PDF

Hierarchical porous TiO(2)-B with thin nanosheets is successfully synthesized. TiO(2)-B polymorph ensures fast insertion of Li-ion due to its pseudocapacitive mechanism. The thin nanosheet walls with porous structure allow exposure to electrolytes for facile ionic transport and interfacial reaction.

View Article and Find Full Text PDF

A novel three-dimensional porous Si-MWNT heterostructure was designed to meet the demand of high-capacity and long-life lithium storage. This material presented a stable capacity above 1000 mAh g(-1) for nearly 200 cycles, which benefited from its highly porous structure combined with robust MWNT connections that accommodated the host volume change and improved the electric conductivity.

View Article and Find Full Text PDF