Publications by authors named "Haipeng You"

Supercapacitor represents an important electrical energy storage technology with high-power performance and superior cyclability. However, currently commercialized supercapacitors still suffer limited energy densities. Here we report an unprecedentedly respiring supercapacitor with chlorine gas iteratively re-inspires in porous carbon materials, that improves the energy density by orders of magnitude.

View Article and Find Full Text PDF

Nowadays, designing and searching for materials with multiple functional characteristics are the keys to achieving high-performance electronic devices. Among many candidates, two-dimensional multiferroic materials have great potential to be applied in highly integrated magnetoelectric devices, such as high-density non-volatile memories. Here, we predict a two-dimensional material, VOF monolayer, to possess intrinsic ferroelectric and ferromagnetic properties.

View Article and Find Full Text PDF

To improve thermal stability and reduce power dissipation of phase-change memory (PCM), the oxygen-doped SnSb (SS) thin film is proposed by magnetron sputtering in this study. Comparing to undoped Sn15Sb85(SS), the oxygen-doped-SS thin film has superior thermal stability and better data retention. Meanwhile, the electrical conductivity of crystallisation oxygen-doped-SS thin film is also lower than that of SS, which means its less power consuming in PCM.

View Article and Find Full Text PDF

In this paper, the following questions were investigated: the proportion of mass loss, the mass fraction of oil, the structure, composition and ultimate analysis of solid residues and gas products. By comparing the treatment effect of using both microwave and electric as the source of heat to dispose the oil-based drilling cuttings (OBDC), the advantages of microwave heating treatment were demonstrated. Meanwhile, the composition of liquid products by microwave pyrolysis was analyzed.

View Article and Find Full Text PDF