Publications by authors named "Haiou Qu"

To combat opioid abuse, the U.S. Food and Drug Administration (FDA) released a comprehensive action plan to address opioid addiction, abuse, and overdose that included increasing the prevalence of abuse-deterrent formulations (ADFs) in opioid tablets.

View Article and Find Full Text PDF

High molar mass polyethylene oxide (HM-PEO) is commonly used to enhance the mechanical strength of solid oral opioid drug products to deter abuse. Because the properties of PEO depend on molar mass distribution, accurately determining the molar mass distribution is a necessary part of understanding PEO's role in abuse-deterrent formulations (ADF). In this study, an asymmetrical flow field-flow fractionation (AF4) analytical procedure was developed to characterize PEO polymers with nominal molar masses of 1, 4 or 7 MDa as well as those from in-house prepared placebo ADF.

View Article and Find Full Text PDF

Intravenous administration of abuse-deterrent opioid products poses high safety risks, in part due to the presence of high molecular weight polymeric excipients. Previous in vivo studies in animal models have shown that the higher molecular weight (Mw) polymeric excipients like polyethylene oxide (PEO) were directly linked to such adverse responses as intravenous hemolysis and kidney damage. PEO polymers have been widely used in abuse-deterrent formulations (ADF) of opioid products, adding to concerns over the general safety of the opioid category due to the unknown safety risk from abuse via unintended routes.

View Article and Find Full Text PDF

In this work, adaptive perfusion, a pressure-driven separation method based on the principle of tangential flow filtration (TFF) was developed for investigating the rate and extent of drug release from drug products containing particulates, such as emulsions, suspensions, liposomes, drug-protein complexes. The TFF filters were pre-conditioned with unique conditioning solutions and processes to improve the fiber reproducibility and robustness. The adaptive perfusion method achieved size-based separation of the particulates with simultaneous analysis of the released drug as well as remaining drug.

View Article and Find Full Text PDF

We demonstrate the production of a structurally correct cyclotide in rice suspension cells with co-expression of a ligase-type AEP, which unlocks monocotyledons as production platforms to produce cyclotides. Cyclotides are a class of backbone-cyclic plant peptides that harbor a cystine knot composed of three disulfide bonds. These structural features make cyclotides particularly stable, and thus they have attracted significant attention for their use in biotechnological applications such as drug design.

View Article and Find Full Text PDF

In 2017, Opana ER was voluntarily removed from the U.S. market based on concerns that its risks outweighed its therapeutic benefits.

View Article and Find Full Text PDF

The backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs.

View Article and Find Full Text PDF

STOML2 (Stomatin-like protein 2) is up-regulated and acts as an oncogenic protein in multiple cancers. However, the role and regulatory mechanism of STOML2 in head and neck squamous cell carcinoma remain unclear. Here, we found that STOML2 is overexpressed and indicates poor outcomes in HNSCC.

View Article and Find Full Text PDF

Pharmaceutical emulsions contain multiple components, such as micellar, aqueous, and oil phases, leading to complex drug transfer and equilibrium phenomena. These complex components present challenges for the bioequivalence assessment of the drug products. The objective of the study was to develop a method that can probe the underlying mechanism and process of drug distribution.

View Article and Find Full Text PDF

Measurement of particle size and size distribution of complex drug products exhibiting complex rheological behaviors can be challenging as these properties may be beyond the theoretical assumptions of the measurement technique. Herein cyclosporine (CsA) ophthalmic emulsion was selected as a model complex system, and an in-depth assessment of particle size was performed using five fundamentally different particle sizing techniques, including dynamic light scattering (DLS), laser diffraction (LD), nanoparticle tracking analysis (NTA), cryogenic transmission electron microscopy (Cryo-TEM) and 2-dimensional diffusion ordered spectroscopy nuclear magnetic resonance (2D DOSY-NMR). The effect of various viscosity modifying and stabilizing excipients in the emulsions was assessed using four types of CsA formulations, i.

View Article and Find Full Text PDF

The aim of the present study was to investigate the relationship between formulation/process variables versus the critical quality attributes (CQAs) of cyclosporine ophthalmic ointments and to explore the feasibility of using an in vitro approach to assess product sameness. A definitive screening design (DSD) was used to evaluate the impact of formulation and process variables. The formulation variables included drug percentage, percentage of corn oil and lanolin alcohol.

View Article and Find Full Text PDF

Commonly used characterization techniques such as cryogenic-transmission electron microscopy (cryo-TEM) and batch-mode dynamic light scattering (DLS) are either time consuming or unable to offer high resolution to discern the poly-dispersity of complex drug products like cyclosporine ophthalmic emulsions. Here, a size-based separation and characterization method for globule size distribution using an asymmetric flow field flow fractionation (AF4) is reported for comparative assessment of cyclosporine ophthalmic emulsion drug products (model formulation) with a wide size span and poly-dispersity. Cyclosporine emulsion formulations that are qualitatively (Q1) and quantitatively (Q2) the same as Restasis® were prepared in house with varying manufacturing processes and analyzed using the optimized AF4 method.

View Article and Find Full Text PDF

Asymmetric flow field flow fractionation (AF4) is an efficient size-based separation technique for the characterization of submicron size particulates. In AF4, membranes having various molecular weight cutoff sizes are used as a barrier to retain particles while allowing the carrier fluid containing electrolytes to permeate. Here, we have hypothesized that electrolyte rejection by the barrier membrane leads to the accumulation of electrolytes in the channel during operation.

View Article and Find Full Text PDF

Capillary electrophoresis (CE) is considered as a versatile technique in the size-based separation and speciation of nanomaterials. The electrophoretic mobility is determined by charge and size of an analyte which are affected by the surface composition of nanomaterials. Size-dependent differential electrophoretic mobility is used as a mechanism for size-based separation of nanoparticles.

View Article and Find Full Text PDF

The isolated yft1 allele controls the formation of fruit color in n3122 via the regulation of response to ethylene, carotenoid accumulation and chromoplast development. Fruit color is one of the most important quality traits of tomato (Solanum lycopersicum) and is closely associated with both nutritional and market value. In this study, we characterized a tomato fruit color mutant n3122, named as yellow-fruited tomato 1 (yft1), which produces yellow colored mature fruit.

View Article and Find Full Text PDF

Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver.

View Article and Find Full Text PDF

Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle.

View Article and Find Full Text PDF

Production and application of nanoparticles in consumer products is at an all-time high due to the emerging field of nanotechnology. Direct detection and quantification of trace levels of nanoparticles within consumer products is very challenging and problematic. Although multiple methodologies are available for this purpose, each method has its own set of limitations.

View Article and Find Full Text PDF

Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood.

View Article and Find Full Text PDF

We report an analytical methodology for the quantification of common arsenic species in rice and rice cereal using capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICPMS). An enzyme (i.e.

View Article and Find Full Text PDF

Due to the increasing use of engineered nanomaterials in consumer products, regulatory agencies and other research organizations have determined that the development of robust, reliable, and accurate methodologies to characterize nanoparticles in complex matrices is a top priority. Of particular interest are methods that can separate and determine the size of nanomaterials in samples that contain polydisperse and/or multimodal nanoparticle populations. Asymmetric-flow field flow fractionation (AF4) has shown promise for the separation of nanoparticles with wide size range distributions; however, low analyte recoveries and decreased membrane lifetimes, due to membrane fouling, have limited its application.

View Article and Find Full Text PDF

We report the development and optimization of a system consisting of capillary electrophoresis (CE) interfaced with inductively coupled plasma mass spectrometry (ICPMS) for rapid and high resolution speciation and characterization of metallic (e.g., gold, platinum, and palladium) nanoparticles in a dietary supplement.

View Article and Find Full Text PDF

Objective: Previous case-control studies on the relation between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and breast cancer did not reach the same conclusion. In the present study, we aimed to further evaluate the relationship between the ACE gene I/D polymorphism and breast cancer.

Methods: We selected 13 case-control studies related to ACE gene I/D polymorphism and breast cancer by searching PubMed, EMBase, Chinese Biomedical Literature Database, Chinese CNKI, and Wanfang database.

View Article and Find Full Text PDF

The surface of superparamagnetic silica coated iron oxide (Fe3O4@SiO2) nanoparticles was functionalized with a disulfide bond linked N-hydroxysuccinimidyl (NHS) ester group in order to develop a method for labeling primary amines in peptides/proteins. The nanoparticle labeled proteins/peptides formed after NHS ester reaction with the primary amine groups were isolated using a magnet without any additional purification step. Nanoparticle moieties conjugated to peptides/proteins were then trimmed by cleavage at the disulfide linker with a reducing agent.

View Article and Find Full Text PDF

Magnetite nanoparticle coated silica (Fe3O4@SiO2) hybrid nanomaterials hold an important position in the fields of cell imaging and drug delivery. Here we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto a silica surface in situ. Many different silica nanomaterials such as Stöber silica nanospheres, mesoporous silica nanoparticles, and hollow silica nanotubes have been coated with a high density layer of water-dispersible magnetite nanoparticles.

View Article and Find Full Text PDF