Publications by authors named "Hainan Lang"

Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNAs (miRNAs) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNAs, the roles of other miRNA-binding proteins (miRBPs) remain unclear in the regulation of miRNA loading, dissociation from RISCs and extracellular release. In this study, we performed protein arrays to profile miRBPs and identify 118 RBPs that directly bind to miRNAs.

View Article and Find Full Text PDF

Background: Heterozygous mutations or deletions of cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear.

View Article and Find Full Text PDF

Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity.

View Article and Find Full Text PDF

Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • Dysfunction in the peripheral auditory nerve (AN) can lead to abnormal processing in the central auditory system, which is linked to heightened sound sensitivity often seen in autism spectrum disorder (ASD).
  • The MEF2C transcription factor is crucial for auditory development, and its mutations can lead to a haploinsufficiency syndrome associated with ASD and related cognitive deficits.
  • Research shows that a mouse model with MEF2C deficits exhibits auditory nerve impairments, highlighting cellular changes and inflammation that may contribute to both auditory dysfunction and ASD symptoms.
View Article and Find Full Text PDF

Aging is associated with auditory nerve (AN) functional deficits and decreased inhibition in the central auditory system, amplifying central responses in a process referred to here as central gain. Although central gain increases response amplitudes, central gain may not restore disrupted response timing. In this translational study, we measured responses putatively generated by the AN and auditory midbrain in younger and older mice and humans.

View Article and Find Full Text PDF

The auditory nerve (AN) of the inner ear is the primary conveyor of acoustic information from sensory hair cells to the brainstem. Approximately 95% of peripheral AN fibers are myelinated by glial cells. The integrity of myelin and the glial-associated paranodal structures at the node of Ranvier is critical for normal AN activity and axonal survival and function in the central auditory nervous system.

View Article and Find Full Text PDF

Age-related hearing loss, or presbyacusis, is a prominent chronic degenerative disorder that affects many older people. Based on presbyacusis pathology, the degeneration occurs in both sensory and non-sensory cells, along with changes in the cochlear microenvironment. The progression of age-related neurodegenerative diseases is associated with an altered microenvironment that reflects chronic inflammatory signaling.

View Article and Find Full Text PDF

There are multiple etiologies and phenotypes of age-related hearing loss or presbyacusis. In this review we summarize findings from animal and human studies of presbyacusis, including those that provide the theoretical framework for distinct metabolic, sensory, and neural presbyacusis phenotypes. A key finding in quiet-aged animals is a decline in the endocochlear potential (EP) that results in elevated pure-tone thresholds across frequencies with greater losses at higher frequencies.

View Article and Find Full Text PDF

Background: The auditory brainstem response (ABR), specifically wave I, is widely used to noninvasively measure auditory nerve (AN) function. Recent work in humans has introduced novel electrocochleographic measures to comprehensively characterize AN function that emphasize suprathreshold processing and estimate neural synchrony.

New Method: This study establishes new tools for evaluating AN function in vivo in adult mice using tone-evoked ABRs obtained from young-adult CBA/CaJ mice, adapting the approach previously introduced in humans.

View Article and Find Full Text PDF

Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit.

View Article and Find Full Text PDF

Age-related hearing loss is a chronic degenerative disorder affecting one in two individuals above the age of 75. Current population projections predict a steady climb in the number of older individuals making the search for interventions to prevent or reverse this disorder even more critical. There is growing acceptance that aberrant activity of resident or infiltrating immune cells, such as macrophages, is a major factor contributing to the onset and progression of age-related degenerative diseases.

View Article and Find Full Text PDF

Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion.

View Article and Find Full Text PDF
Article Synopsis
  • Exposure to noise or harmful agents can damage cells in the cochlea, but the exact mechanisms causing this damage are not well understood.
  • The study aimed to identify proteins in the cochlea that respond to such injuries using a proteo-transcriptomic approach, involving techniques like MALDI imaging.
  • Results showed distinct patterns of protein presence in cochlear injury models, leading to the identification of 208 proteins influenced by such injuries, paving the way for better understanding of cochlear damage at a molecular level.
View Article and Find Full Text PDF

Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration.

View Article and Find Full Text PDF

Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement.

View Article and Find Full Text PDF

The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier.

View Article and Find Full Text PDF

Investigators have utilized a wide array of animal models and investigative techniques to study the mammalian auditory system. Much of the basic research involving the cochlea and its associated neural pathways entails exposure of model cochleae to a variety of ototoxic agents. This allows investigators to study the effects of targeted damage to cochlear structures, and in some cases, the self-repair or regeneration of those structures.

View Article and Find Full Text PDF

The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy.

View Article and Find Full Text PDF

Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea.

View Article and Find Full Text PDF

Objective: Identify cells supporting cochlear lateral wall regeneration.

Study Design: Prospective controlled trial.

Setting: Laboratory.

View Article and Find Full Text PDF

Ouabain application to the round window can selectively destroy type-I spiral ganglion cells, producing an animal model of auditory neuropathy. To assess the long-term effects of this deafferentation on synaptic organization in the organ of Corti and cochlear nucleus, and to ask whether surviving cochlear neurons show any post-injury plasticity in the adult, we quantified the peripheral and central synapses of type-I neurons at posttreatment times ranging from 1 to 3 months. Measures of normal DPOAEs and greatly reduced auditory brainstem responses (ABRs) confirmed the neuropathy phenotype.

View Article and Find Full Text PDF

Radiotherapy is routinely used for the treatment of lung cancer. However, the mechanisms underlying ionizing radiation (IR)-induced senescence and its role in lung cancer treatment are poorly understood. Here, we show that IR suppresses the proliferation of human non-small cell lung cancer (NSCLC) cells via an apoptosis-independent mechanism.

View Article and Find Full Text PDF

Mutations in phosphoribosyl pyrophosphate synthetase 1 (PRPS1) are associated with a spectrum of non-syndromic to syndromic hearing loss. PRPS1 transcript levels have been shown to be regulated by the microRNA-376 genes. The long primary RNA transcript of the miR-376 RNA cluster members undergo extensive and simultaneous A → I editing at one or both of two specific sites (+4 and +44) in particular human and mouse tissues.

View Article and Find Full Text PDF

Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis.

View Article and Find Full Text PDF